background image

A-4

Section 61246026L6-5, Issue 2

61246026L6-5B

The disarming process ensures race-free operation of
HDSL element disarming and Smartjack loop-down.
Duration of the disarm sequence may need to exceed
24 seconds to allow detection and loop-down of up to
three HDSL elements and the Smartjack.

All HDSL elements can be commanded to move from
the armed state into the disarmed state by the ESF
DATA LINK disarming sequence used for NIU
Smartjack loop-down as follows:

ESF Disarm Sequence

0010 0100 1111 1111

for four repetitions per element in loopback

The disarming process ensures race-free operation of
HDSL element disarming and Smartjack loop-down.
Duration of the disarm sequence may need to exceed
16 repetitions to allow detections and loop-down of up
to three HDSL elements and the Smartjack.  This
sequence will loop-down the Smartjack and the HDSL
element.

All HDSL elements will automatically move from the
armed state into the disarmed state when a default
timeout value of two hours is reached.

Arming Timeout

2 Hours

Loop-up State

In the loop-up state, the selected HDSL element
provides continuous loop-up of the DS1 signal.
However, the data flow is monitored for the in-band
deactivation sequence, the in-band disarming
sequence, and the ESF data link disarming sequence.
Also, a loop-up timeout value causes automatic return
to the armed state.  All other control code sequences
are ignored in the loop-up state.

Transition from loop-up to armed state:  

Any

HDSL element can be commanded to move from the
loop-up state into the armed state by a single in-band
16-bit deactivate control code sequence.  The same
deactivation sequence as shown is used for all HDSL
elements.

Deactivation

After receiving sequence for > 5 seconds

Duration of the deactivation sequence may need to
exceed 18 seconds to allow detection and loop-down
of up to three HDSL elements.   The deactivation
sequence does not disarm the HDSL elements.  They
can still respond to activation sequence control codes.
All HDSL elements automatically move from the
loop-up state into the armed state when the selected
loop-up timeout value is reached.

Loopup Timeout

programmable from HTU-C at

None, 20, 60, or 120 minutes

Transition from loop-up to disarmed state:  

All

HDSL elements can be simultaneously commanded to
move from the loop-up state into the disarmed state by
either the standard 5-bit in-band disarming sequence
used fro NIU Smartjack loop-down, or by the ESF
DATA LINK command, as previously described.

Summary of Contents for T200 FNID

Page 1: ...ches 3 Table D Card Edge Pin Assignments 4 Table E Screen Abbreviations 7 Table F HDSL Loss Values 14 Table G Loop Insertion Loss Data 14 Table H Troubleshooting Guide 15 Table I ADTRAN T200 Low Volta...

Page 2: ...ctive range of an ADTRAN HDSL based T1 circuit can be extended using the ADTRAN HDSL Range Extenders HREs An HRE can double the deployment range of standard HDSL and extend the digital subscriber loop...

Page 3: ...l quality on Loop 2 is in one of the following five states Off No synchronization of HTU C and HTU R on Loop 2 Red Poor signal quality on Loop 2 10 7 BER Yellow Marginal signal quality on Loop 2 2 dB...

Page 4: ...ressing LOC activates the bilateral loopback If the HTU R is in loopback pressing LOC deactivates the bilateral loopback Table C Front Panel Loopback Switches 3 CONNECTIONS All connections of the HTU...

Page 5: ...ay be accomplished using the control port of the HTU C Refer to the ADTRAN HTU C Installation and Maintenance practice P N 61246001LX 5 or other HTU C practices for more information Figure 3 HTU R MON...

Page 6: ...provides a faceplate mounted DB9 connector that supplies an RS 232 interface for connection to a controlling terminal The pinout of the DB9 is illustrated in Figure 5 The terminal interface operates a...

Page 7: ...History screen for HRE 1 illustrated in Figure 9A Type H again for the Performance History of HRE 2 Note Upon entering the terminal screens at the HTU R note the current time as it relates to the 15...

Page 8: ...tion status A measure of signal quality for each HDSL loop is displayed in graphic form on the bottom of the screen The measure is from 0 poor signal quality to 9 excellent signal quality Guidelines f...

Page 9: ...orer Boulevard Huntsville Alabama 35806 2807 For Information or Technical Support Support Hours Normal 7am 7pm CST Emergency 7 days x 24 hours Phone 800 726 8663 888 873 HDSL Fax 256 963 6217 Internet...

Page 10: ...00 X 2 X X 1 X 00000 UAS 00000 X 1 X X 0 X NONE ALARMS NONE X 0 X Press Z to zero registers X to restart MIN MAX M for Main Menu H for HDSL Range Extender 1 HRE View CIRCUIT ID 01 01 99 00 10 18 LOOP...

Page 11: ...6 30 Press view number to select view 20 15 16 15 Press H to view HRE 1 history PAGE COMMANDS B Page Back F Page Forward Press M to go to Main Menu CIRCUIT ID 01 01 99 00 10 44 24 HOUR REGISTERS PERFO...

Page 12: ...2 LOOPBACK TO CUSTOMER AT HTU C INACTIVE 3 LOOPBACK TO NETWORK AT HTU R INACTIVE 4 LOOPBACK TO CUSTOMER AT HTU R INACTIVE 5 LOOPBACK TO NETWORK AT HRE 1 UNAVAILABLE 6 LOOPBACK TO CUSTOMER AT HRE 1 UN...

Page 13: ...CKING XX BLOCKED 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Option not configurable from this terminal The DS1 Output level can be configured using a strap on the circuit...

Page 14: ...S OK 000 HTU R RED LOS OK 000 DS1 YELLOW OK 000 BLUE AIS OK 000 HDSL Span History SPAN 1 LP1 HLOS OK 000 LP2 HLOS OK 000 HTU C LP1 MRGN OK 000 LP2 MRGN OK 000 HRE 1 LP1 MRGN OK 000 LP2 MRGN OK 000 Pre...

Page 15: ...ith 26 AWG cable the maximum loop length including bridged tap lengths is 9 kFt 3 For loops with 24 AWG cable the maximum loop length including bridged tap lengths is 12 kFt 4 Any single bridged tap i...

Page 16: ...se Table H to troubleshoot the ADTRAN HTU R 8 MAINTENANCE The ADTRAN HTU R requires no routine maintenance In case of equipment malfunction use the faceplate Bantam jack connector to help locate the s...

Page 17: ...HDSL Loop 2 Customer Interface 4 wire DS1 T1 403 compatible ITU T I 431 compliant DS1 Signal Output Level 0 or 15 dB DS1 Input Signal Level 0 to 22 5 dB DS1 Line Coding AMI B8ZS DS1 Framing Format SF...

Page 18: ...loopback capabilities are controlled from the central office unit HTU C NOTE If the HTU C on a circuit contains Standard loopbacks then refer to subsection 1 of this Appendix to determine its loopbac...

Page 19: ...code sequences presented the in band codes are shown leftmost bit transmittedfirst andtheESFdatalinkcodes with rightmost bit transmitted first Disarmed State The disarmed state is the normal mode of o...

Page 20: ...111 0100 0010 The designated HDSL element will loop up after receiving the proper activation sequence Transition from armed to disarmed state All HDSL elements can be commanded to move from the armed...

Page 21: ...wever the data flow is monitored for the in band deactivation sequence the in band disarming sequence and the ESF data link disarming sequence Also a loop up timeout value causes automatic return to t...

Page 22: ...ard customer at HTUC N FF04 Loopback data from network toward network at HRE1 N FF06 Loopback data from network toward network at HRE2 C 3F04 Loopback data from customer toward customer at HRE1 C 3F06...

Page 23: ...d the unit will remain in loopback If the pattern is reinstated the injection of 10 bit errors will resume at 20 second intervals If a second HRE is present the units have been armed the HRE will loop...

Reviews: