background image

6   TX Thermal Disperson Level Switches | 

Operating instruction manual

Note that adjusting R18 affects both alarm recognition time (time for the TX switch to recognize an alarm condition at 

the sensors) as well as recovery time (time for the TX switch to recognize that the conditions have returned to normal) 

by positioning the “alarm/recovery” window nearer the alarm or normal process condition mV values. 

Note: 

it is impor-

tant to allow 5+ minutes of stabilization in any new process condition to obtain repeatable time values.

1.  If the alarm entry time needs to be made faster 

AND

 the alarm recovery time (time to return to normal condi-

tions) needs to be made slower, turn 

R18 CCW

 in ½-1 turn increments, moving the alarm/recovery window 

nearer the Alarm (Low TC; High mV) process condition.

2.  If the alarm recovery time

 (time to return to normal energized state) needs to be made faster 

AND

 the alarm 

entry time needs to be made longer, turn 

R18 CW

 in ½ - 1 turn increments.  This moves the alarm/recover 

window closer to the Normal (High TC; Low mV) process condition.

3.  Test the switch response after each adjustment until an acceptable balance in alarm entry time vs. recovery 

time (return to normal conditions) is established empirically.

3.2 Calibrate from Low TC (Thermal Conductivity) process conditions as follows:

JP3 State B

 - Green LED, output relay 

energized

 at 

NORMAL

 condition (LOW Thermal Conductivity, high differential 

temperature, conditions at the sensors); low level (level below sensor), flow below set point (see table page 6)

Notes: 

1.  If the TX switch is operated in 

State B

, the TX switch should be adjusted (calibrated) in the 

ALARM

 condi-

tion; Highest Thermal Conductivity conditions on the sensors (wet sensor, high flow); Green LED and output 

relay will be de-energized during and after calibration.

2.  CCW rotation of R18 turns LED ON.

Calibration Adjustments

1.  Provide the 

ALARM

 condition (

High

 Thermal Conductivity process condition (high level (level above sensor), 

high flow condition)) at the sensor.  Green LED and output relay 

will be

 de-energized after calibration adjust

-

ments

2.  Allow 5 minutes (minimum time) for switch temperature to stabilize.

3.  Adjust R18 (see drawing page 5) as follows:

 

A.   If LED is On – slowly turn R18 clockwise (CW) until the green LED turns OFF

 

B.   If LED is Off – slowly turn R18 counter clockwise (CCW) until the green LED turns on – then slowly CW  

                   until it just turns OFF.

4.  Turn R18 CW as follows for stable operation (no false alarms) (LED will be Off):

 

A.   Air – ¼ turn

 

B.   Organics/Hydrocarbons – ½ turn

 

C.   Water – 1 full turn

3.3 Trimming the TX settings for optimum alarm entry/return to normal time balance if required:

When the R18 is adjusted such that the LED just turns off, (3.a/b. above), the TX “alarm/recovery (return to normal) 

window” is positioned nearest to the process’s de-energized LED Alarm (high TC; Low mV) value.  This provides the 

shortest possible recovery time to recognize the energized LED Normal condition, but the longest possible time to 

enter the de-energized (Alarm) state.

Step 4 is an attempt to provide somewhat equal response times (time to enter alarm vs. time to recognize normal con

-

ditions and exit the alarm condition) as well as stability from false alarms. Note that adjusting R18 affects both alarm 

recognition time (time for the TX switch to recognize an alarm condition at the sensors) as well as recovery time (time 

for the TX switch to recognize that the conditions have returned to normal) by positioning the “alarm/recovery” window 

nearer the alarm or normal process condition mV values. 

Note: 

it is important to allow 5+ minutes of stabilization in any new process condition to obtain repeatable time val

-

ues.

1.  If the alarm entry time needs to be made faster 

AND

 the alarm recovery time (time to return to normal condi-

tions) needs to be made slower, turn 

R18 CW

 in ¼ - ½ turn increments.  Test the switch response after each 

adjustment until an acceptable balance in alarm entry time vs. recovery time (return to normal conditions ) is 

established empirically.

Summary of Contents for TX series

Page 1: ...v J Flow level granular solids and temperature switch K TEK Products Introduction This operating instruction manual provides the following information Calibration set point procedure see page 5 Config...

Page 2: ...Level Operation 13 5 3 Installation for Flow Rates Minimum and Maximum 13 5 4 Installation for Remote Electronics 14 5 5 Installation Setup 15 6 0 Flow Rate Detection 16 7 0 INTERFACE DETECTION 16 8 0...

Page 3: ...against the probes the molecules of the medium absorb more heat from the active sensor and the voltage differential begins to drop or as the flow rate increases the voltage differential will decrease...

Page 4: ...ol system If fail safe is to be incorporated the output relay and green LED should be energized at what is determined as the normal condition JP3 jumpers are used to determine the relay action vs the...

Page 5: ...ower values 3 1 Calibrate from HIGH TC Thermal Conductivity process conditions as follows JP3 State A Green LED output relay energized at NORMAL condition High Thermal Conductivity low differential te...

Page 6: ...hermal Conductivity process condition high level level above sensor high flow condition at the sensor Green LED and output relay will be de energized after calibration adjust ments 2 Allow 5 minutes m...

Page 7: ...a combination of level and temperature or flow and temperature with the dual switch point option With the dual switch point option board the flow rate of a process can be monitored with the millivolt...

Page 8: ...witch set for Level or Air Flow Fail Safe High Level or High Flow JP3 Relay set for State B Energizes when dry or below flow set point above setting of R18 Two Jumpers x 2mm Switch set for Temperature...

Page 9: ...rgized LED On Fail Safe WET or Air Flow Set Point Normal Condition DRY or Air Flow Set Point Normal Condition Relay De energized LED OFF DRY or Air Flow Set Point Normal Condition WET or Air Flow Set...

Page 10: ...the delta voltage The output has an inverse relationship to flow and is not linear the output voltage decreases as flow increases The amplified output does not apply when used as a temperature switch...

Page 11: ...ation Condition State A State B Relay Energized LED On DRY or Air Flow Set Point WET or Air Flow Set Point Relay De energized LED OFF WET or Air Flow Set Point DRY or Flow Set Point LEVEL OR AIR FLOW...

Page 12: ...leg used to mount the instrument be the same as the instrument connec tion size 1 MNPT type The standard instrument 1 8 inch will fit in a 1 X 1 X 1 or larger tee The 1 2 inch option units are availa...

Page 13: ...and Maximum This switch can be also be configured to detect between a minimum or a maximum flow rate or a minimum maximum temperature With the dual circuit board option the unit can also detect a flow...

Page 14: ...perature that exceeds the maximum operating temperature 140 F or 65 C of the electronics module The remote housing simply contains a terminal block interface for a cable which connects to another hous...

Page 15: ...it in a tee the tee size should be the same size as the line or smaller A larger diameter tee will allow the water to expand and cause false trip to occur because of vortices and or eddy currents The...

Page 16: ...nse time is needed the TQ version may be the solution For small flow rates the IX or IM in line unit would be the option The delta voltage will decrease With the dual switch point top board the delta...

Page 17: ...40 50 60 70 80 90 300 275 4 297 9 320 3 342 7 365 387 4 409 6 431 8 450 476 2 200 498 3 520 4 542 4 564 4 586 3 608 2 630 1 651 9 673 7 695 5 100 717 2 738 8 760 5 782 1 803 6 825 1 846 6 868 0 889 4...

Page 18: ...del 141mV TQ Model 140mV TS Model 460mV IX Model 110mV Water TX HO Model 30mV H1 H2 Model 10mV TQ Model 25mV TS Model 90mV IX Model 15mV 9 2 1 With power disconnected measure resistance of Heater and...

Page 19: ...Operating instruction manual TX Thermal Disperson Level Switches 19 10 0 APPENDIX A Instrument Rangeability 10 1 TX Series 10 2 IX Series...

Page 20: ...vel Switches Operating instruction manual 11 0 APPENDIX B Conversion Table Examples Example 1 100 CFM in 4 line 100 x 1884 18 84 F P S Example 2 10 G P M in 3 line 10 x 0434 434 F P S Test Conditions...

Page 21: ...tion H1 320 F 500 F RED RED WHT BLK GRN SEE WIRE MARKERS Special Temperature Range Option H2 100 F 900 F TERMINAL NUMBER 1 2 3 4 5 HTR HTR ACT COM REF Integral Electronics RED RED YEL BLK GRN Remote E...

Page 22: ...3 0 APPENDIX D TX Heating vs Dispersion Above is a graph of the model TX probe The longer line depicts the time response of the RTD by internal heating The shorter line depicts the delta voltage or de...

Page 23: ...h were not the result of either alterations misuse abuse improper or inadequate adjustments applications or servicing of the product ABB s warranty does not include onsite repair or services Field ser...

Page 24: ...vel Switches Operating instruction manual 15 0 CUSTOMER SUPPORT ABB USA Canada International 18321 Swamp Road Prairieville LA 70769 USA Tel 1 225 673 6100 Fax 1 225 673 2525 Email service ktekcorp com...

Page 25: ...Data Sheets MSDS and decontamination tags by affixing these documents in close proximity to the shipment label for identification purposes January 18 2006 Return Authorization Form Customer Date Cont...

Page 26: ...26 TX Thermal Disperson Level Switches Operating instruction manual...

Page 27: ...Operating instruction manual TX Thermal Disperson Level Switches 27...

Page 28: ...ble lack of information in this document We reserve all rights in this document and in the subject matter and illustrations contained therein Any reproduction disclosure to third parties or utilizatio...

Reviews: