background image

ABB Switzerland Ltd

REG 316*4   1MRB520049-Uen / Rev. F

3-16

Fig. 3.1

Application examples for input transformer
configuration codes K61 to K66

PCT : protection c.t.
MCT : metering c.t.
VT

: v.t.

Summary of Contents for REG316 4 Series

Page 1: ...p REG316 4 Numerical Generator Protection Operating Instructions 1MRB520049 Uen Edition July 2002 ...

Page 2: ...as been carefully prepared and reviewed Should in spite of this the reader find an error he is requested to inform us at his earliest convenience The data contained herein purport solely to describe the product and are not a warranty of performance or characteristic It is with the best interest of our customers in mind that we constantly strive to improve our products and keep them abreast of adva...

Page 3: ...re C 3 Setting the function F 4 Description of function and application B 5 Operation HMI E 6 Self testing and diagnostics C 7 Installation and maintenance C 8 Technical data B 9 Interbay bus IBB interface E 10 Supplementary information G 12 Appendices C ...

Page 4: ......

Page 5: ...ipt S 7 2 1 and connect it Location S 7 2 2 Process connections I 12 Wiring diagram S 7 2 S 7 3 2 to S 7 3 5 Control system connections I 9 IBB S 9 6 IBB address list How to set and Installing the MMI S 5 2 configure it Starting the MMI S 7 3 1 S 5 2 3 Configuration S 3 2 to S 3 4 S 5 4 S 5 5 S 5 11 Setting functions S 3 5 to S 3 7 S 5 4 S 5 5 S 5 11 Quitting the MMI S 5 2 3 How to check test Chec...

Page 6: ......

Page 7: ...REG 316 4 1MRB520049 Uen Rev B ABB Switzerland Ltd 1 1 March 01 1 INTRODUCTION 1 1 General 1 2 1 2 Application 1 3 1 3 Main features 1 3 ...

Page 8: ...ween fault free operating time and total operational life is certainly the most important re quirement a protection device has to fulfil As a result of con tinuous monitoring this ratio in the case of REG 316 4 is almost unity Operation wiring and compactness of the protection are the es sence of SIMPLICITY thanks to the interactive menu controlled man machine communication HMC program Absolute FL...

Page 9: ...undercurrent Current DT provision for inrush blocking peak value overcurrent Current Inst voltage controlled overcurrent Imax Umin inverse time overcurrent Current Inv directional definite time overcurrent DirCurrentDT protection directional inverse time overcurrent DirCurrentInv protection definite time NPS NPS DT inverse time NPS NPS Inv definite time over and undervoltage Voltage DT peak value ...

Page 10: ...recorder The scheme includes an event memory The allocation of the opto coupler inputs the LED signals and the auxiliary relay signal outputs the setting of the various pa rameters the configuration of the scheme and the display of the events and system variables are all performed interactively using the menu driven HMC man machine communication REG 316 4 is equipped with serial interfaces for the...

Page 11: ...ounting 2 4 2 2 4 Front of the protection 2 4 2 2 5 PC connection 2 5 2 2 6 Test facilities 2 5 2 3 Auxiliary supply unit 2 6 2 4 Input transformer unit 2 6 2 5 Main processor unit 2 7 2 6 Binary I O unit 2 8 2 7 Interconnection unit 2 8 2 8 Injection unit REX 010 2 9 2 9 Injection transformer block REX 011 2 13 2 9 1 REX 011 2 13 2 9 2 REX 011 1 2 2 14 2 9 3 Figures 2 18 2 10 Testing without the ...

Page 12: ...itudinal differential protection and includes the optical modems for transferring the measurements to the remote station Binary process signals are detected by the binary I O unit and transferred to the main processor which processes them in rela tion to the control and protection functions for the specific project and then activates the output relays and LED s accordingly The analogue input varia...

Page 13: ...itching sets of parameter settings are transferred by the station control system to the pro tection RE 316 4 can be equipped with one up to four binary I O units There are two tripping relays on the units 316DB61 and 316DB62 each with two contacts and according to version ei ther 8 opto coupler inputs and 6 signalling relays or 4 opto coupler inputs and 10 signalling relays The I O unit 316DB63 is...

Page 14: ...he aid of four fixing brackets The dimensions of the panel cut out can be seen from the data sheet The terminals are located at the rear Installation in a 19 rack A mounting plate with all the appropriate cut outs is available for fitting the protection into a 19 rack see Data Sheet The termi nals are located at the rear Surface mounting A hinged frame see Data Sheet is available for surface mount...

Page 15: ...ntrol operations can also be executed using the local control unit on the front of the device Should the latter fail the reset button can be pressed using a suitable implement through the hole in the frontplate 2 2 5 PC connection In order to set the various parameters read events and meas urements of system voltages and currents and also for diagnos tic and maintenance purposes a personal compute...

Page 16: ...nsformer unit The input transformer unit 316GW61 serves as input interface between the analogue primary system variables such as cur rents and voltages and the protection The mounting plate of the unit can accommodate up to nine c t s and v t s The shunts across the secondaries of the c t s are also mounted in the input transformer unit The input transformers provide DC isolation between the prima...

Page 17: ...ssor unit 316VC61a or 316VC61b The samples taken by the A D converter are pre processed by a digital signal processor DSP The interfaces for connecting an HMI PC and for communication with the station control system SPA IEC60870 5 103 are included A PCMCIA interface with two slots facilitates connection to other bus systems such as LON and MVB The flash EPROM s used as program memory enable the so...

Page 18: ...nits The relationship between the versions and the number of I O units is given in the data sheet The opto coupler inputs are adapted to suit the available input voltage range by choice of resistor soldered to soldering posts This work is normally carried at the works as specified in the or der The technical data of the opto coupler inputs and the tripping and signalling outputs can be seen from t...

Page 19: ...tage Tolerance Output U1 110 or 125 V DC 10 20 110 V or 125 V 1 1 A U2 110 125 220 250V DC 88 312 V DC 96 V 1 A U3 48 60 110 V DC 36 140 V DC 96 V 1 A Versions U2 and U3 operate with a DC DC converter The frequency of the injection voltage which corresponds pre cisely to of the rated frequency of 50 Hz or 60 Hz can be se lected by positioning a plug in jumper on PCB 316AI61 The frequency is then 1...

Page 20: ... returns to logical 0 Important Ensure that the injection voltage is switched off before car rying out any work at the star point The toggle switch on the front of the injection unit REX 010 must be set to disable and the yellow LED disabled must be lit The input voltage the injection frequency and the opto coupler voltage must be specified in the customer s order and are then set in the works pri...

Page 21: ...REG 316 4 1MRB520049 Uen Rev C ABB Switzerland Ltd 2 11 Fig 2 1 Injection unit REX 010 front view corresponds to HESG 448 574 ...

Page 22: ...ABB Switzerland Ltd REG 316 4 1MRB520049 Uen Rev C 2 12 Fig 2 2 PCB 316AI61 in the injection unit derived from HESG 324 366 showing locations of X11 and X12 ...

Page 23: ... Uis stator injection voltage Uir rotor injection voltage Ui reference voltage connected to analogue input channel 8 of REG 316 4 The same injection transformer is used for stator and rotor pro tection schemes The rated values of the injection voltages Uis Uir and Ui apply for the version REX 010 U1 and a station battery voltage of UBat 110 V DC All the voltages are less by a factor of 96 110 0 87...

Page 24: ...ermine the permissible injection voltage R Ps mW Uis V Version 8 0 85 M11 32 1 7 M12 128 3 4 M13 Table 2 2 REX 011 1 R Ps W Uis V Version 0 45 6 4 M21 1 8 12 8 M22 7 2 25 6 M23 Table 2 3 REX 011 2 Always select the maximum possible injection voltage For ex ample for a grounding resistor R Ps 35 mW Uis 1 7 V is used In the case of versions M11 M12 and M13 the impedance of the connection between the...

Page 25: ...e following diagrams In the case of versions M12 M22 M13 and M23 shorting links KB 15 must be placed on the universal terminals How this is done can be seen from the diagram Shorting links at the end of this section Shorting links and 3 rating plates are supplied with every transformers The corresponding rating plate must be affixed over the old one following conversion Versions M11 and M21 univer...

Page 26: ... REX 011 2 two pairs of parallel windings are connected in series All the universal terminals are connected together using the shorting links KB 15 Versions M13 and M23 10 11 12 13 14 15 16 17 heavy duty terminals UHV universal terminals UK shorting links KB 15 S3 S4 S5 S6 11 12 13 14 15 10 In the case of versions M13 REX 011 1 and M23 REX 011 2 all the windings S3 S6 are connected in series Termi...

Page 27: ...th every transformer The shorting links are placed in the recesses provided on the universal terminals Versions M12 and M22 First place the broken off shorting link with the opening down wards on terminal 11 and then fit 3 links one after the other Each one must be secured using one of the screws supplied Versions M13 and M23 First place the broken off shorting link with the opening down wards on ...

Page 28: ...ndary injection of the stator at the terminals using REX 011 2 Fig 2 7 Wiring diagram for rotor ground fault protection using REX 011 Fig 2 8 Wiring diagram for rotor ground fault protection using REX 011 1 2 Fig 2 9 Wiring diagram for testing without the generator using REX 011 Fig 2 10 Wiring diagram for testing without the generator using REX 011 1 2 Fig 2 11 Dimensioned drawing of the injectio...

Page 29: ...erator Us N12 N11 R S T Voltage transformer X1 REX011 7 6 8 5 3 4 1 2 T T Ui2 Ui3 Ui1 X1 5 3 4 1 2 REX010 rest rest Up8 Up8 P8nax 3 2 Ui 10 11 6 7 UBat UBat REG 316 4 T18 T17 T15 T16 Fig 2 4 Wiring diagram for primary injection at the stator using REX 011 see Fig 2 11 ...

Page 30: ...EX011 1 8 9 7 6 8 5 3 4 1 2 T T Ui2 Ui3 Ui1 X1 5 3 4 1 2 REX010 UBat UBat rest rest Up8 Up8 P8nax 3 2 N1 N2 N 12 N 11 Voltage transformer Grounding transformator REG 316 4 X2 X1 T18 T17 T15 T16 Fig 2 5 Wiring diagram for secondary injection of the stator at the star point using REX 011 1 see Fig 2 11 ...

Page 31: ... 6 8 5 3 4 1 2 T T Ui2 Ui3 Ui1 X1 5 3 4 1 2 REX010 UBat UBat rest rest Up8 Up8 P8nax 3 2 N 12 N 11 Generator R S T N1 N2 Grounding transformator Voltage transformer REG 316 4 X1 T18 T17 T15 T16 Fig 2 6 Wiring diagram for secondary injection of the stator at the terminals using REX 011 2 see Fig 2 11 ...

Page 32: ...T T Ui2 Ui3 Ui1 X1 5 3 4 1 2 REX010 rest rest Up8 Up8 P8nax 3 2 Ui 10 11 8 9 UBat UBat Rotor 2x2uF 8kV 2x2uF 8kV 1 2 REG 316 4 T14 T13 T15 T16 Fig 2 7 Wiring diagram for rotor ground fault protection using REX 011 see Fig 2 11 1 Injection at both poles 2 Injection at one pole for brushless excitation ...

Page 33: ... T T Ui2 Ui3 Ui1 X1 5 3 4 1 2 REX010 rest rest Up8 Up8 P8nax 3 2 Ui 8 9 6 7 UBat UBat Rotor 2x2uF 8kV 2x2uF 8kV 1 2 REG 316 4 T14 T13 T15 T16 Fig 2 8 Wiring diagram for rotor ground fault protection using REX 011 1 2 see Fig 2 11 1 Injection at both poles 2 Injection at one pole for brushless excitation ...

Page 34: ...10 11 8 9 UBat UBat 10W Rf S1 50V Ck 4uF S2 CE 1uF 22 Ω 1k Ω 2 5W REG 316 4 Us Ur T15 T16 T18 T17 T14 T13 Fig 2 9 Wiring diagram for testing without the generator using REX 011 S1 Bridging of the rotor coupling capacitor Ck Rotor coupling capacitor CE Rotor stator ground capacitance Rf Variable ground fault resistor S2 Ground fault resistor 0 W ...

Page 35: ... 8 9 6 7 UBat UBat 10W Rf S1 50V Ck 4uF S2 CE 1uF 22 Ω 1k Ω 2 5W REG 316 4 Us Ur T18 T17 T14 T13 T15 T16 Fig 2 10 Wiring diagram for testing without the generator using REX 011 1 2 S1 Bridging of the rotor coupling capacitor Ck Rotor coupling capacitor CE Rotor stator ground capacitance Rf Variable ground fault resistor S2 Ground fault resistor 0 W ...

Page 36: ...ABB Switzerland Ltd REG 316 4 1MRB520049 Uen Rev C 2 26 Fig 2 11 Dimensioned drawing of the injection transformer block Type REX 011 corresponds to HESG 324 388 ...

Page 37: ...est the stator ground fault protection switch S1 must be kept closed all the time The grounding resistor RE comprises two resistors of 1 kW and 22 W This is a simple method of simulating the ratio of the v t Settings for MTR and REs The theoretical value of MTR is determined as follows MTR x V V 22 1000 22 110 50 102 W W W The low injection voltage of 50 V increases the value of MTR by a factor 11...

Page 38: ...and Ltd REG 316 4 1MRB520049 Uen Rev C 2 28 The settings can also be determined using the setting func tions REs Adjust and CoupC Adjust according to Section 3 5 25 which is to be preferred to the above calculation ...

Page 39: ...2 3 3 Frequency range 3 12 3 4 System parameter settings 3 13 3 4 1 Configuring the hardware 3 13 3 4 2 Entering the c t v t channels 3 18 3 4 3 Entering comments for binary inputs and outputs 3 19 3 4 4 Masking binary inputs entering latching parameters and definition of double indications 3 20 3 4 5 Edit system parameters 3 20 3 4 5 1 Edit system I O 3 21 3 4 5 2 Edit system name 3 24 3 4 5 3 Ed...

Page 40: ... 122 3 5 11 2 Rotor E F protection 3 135 3 5 11 3 Interturn protection 3 137 3 5 12 Peak value overvoltage Voltage Inst 3 139 3 5 13 Underimpedance Underimped 3 145 3 5 14 Underreactance MinReactance 3 153 3 5 15 Power Power 3 165 3 5 16 Stator overload OLoad Stator 3 179 3 5 17 Rotor overload OLoad Rotor 3 185 3 5 18 Frequency protection Frequency 3 191 3 5 19 Rate of change of frequency protecti...

Page 41: ...inputs 3 298 3 6 1 1 6 Measurement outputs 3 298 3 6 1 1 7 Flow chart for measurement inputs and outputs 3 298 3 6 1 2 Loading FUPLA 3 299 3 6 2 Logic Logic 3 301 3 6 3 Delay integrator Delay 3 305 3 6 4 Contact bounce filter Debounce 3 311 3 6 5 LDU events LDUevents 3 315 3 6 6 Counter Counter 3 319 3 7 Measurement functions 3 323 3 7 1 Measurement function UIfPQ 3 323 3 7 2 Three phase current p...

Page 42: ...ys an error message if there is not The maximum of 48 protection functions are possible The settings and the software key determine which functions are active and enables the differing demands with respect to control and protection configuration to be satisfied Only functions which are actually needed should be activated Every active function entails computing effort and can influ ence the operati...

Page 43: ...s 2 2 times every 20 ms 40 199 ms 1 1 times every 20 ms 200 ms 1 for 50 Hz or 60 Hz Table 3 1 Typical protection function repetition rates The repetition rates of some of the functions e g differential protection earth fault protection or purely logic functions do not depend on their settings The scanning of the binary inputs and the setting of the signal ling and tripping outputs takes place at t...

Page 44: ...ot for conditioning the input signal The computation requirement of the REG 316 4 protection func tions can be seen from Table 3 3 The values given are typical percentages in relation to the computing capacity of a fictitious main processing unit According to Table 3 1 the computation requirement of some of the functions increases for low settings of the time delay t and therefore a factor of 2 or...

Page 45: ...2 OLoad Stator 4 7 3 OLoad Rotor 6 3 Overtemp 12 15 ditto Frequency 15 3 2 df dt 50 5 Overexcitat 15 ditto 2 U f Inv 25 5 ditto Stator EFP 40 ditto Rotor EFP 40 ditto Pole Slip 20 ditto I0 Invers 4 3 BreakerFailure 34 46 ditto FUPLA 1 2 4 ditto VDEW6 1 Delay 8 ditto Counter 8 ditto Logic 4 ditto Contact bounce filter 0 1 Analog RIO Trig 2 4 2 LDU events 4 ditto UIfPQ 5 ditto MeasureModule Voltage ...

Page 46: ...ogue inputs the amount of computing capacity required for function 2 is reduced to that of a second stage Function No Type Input channel Phases Settings Pick up Time Percentage incl factor 1 current 1 2 3 three 10 0 IN 30 ms 3 x 4 12 2 current 1 2 3 three 2 5 IN 100 ms 1 x 2 2 3 current 4 single 3 5 IN 300 ms 2 x 1 2 4 voltage 7 single 2 0 UN 50 ms 2 x 2 4 Total 20 Table 3 4 Example for calculatin...

Page 47: ...g Hz º Û Û Te Diº 2 0 000 1A deg º Û Û Di Diº 3 0 000 1A deg º Û Û SM Diº 4 0 000 5A deg º Û Û Do Diº 5 0 000 5A deg º Û Û RE Diº 6 0 000 5A deg º Û Û Diº 7 0 000 100V deg º Û ÛÀÄÄÄ Diº 8 0 000 100V deg º Û Û Diº 9 0 000 100V deg º Û Û Diº º Û Û Diº Time 2001 04 19 12 08 35 2400 º Û Û Diº º Û Û REº º Û Û ÈÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍ Û Û ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ...

Page 48: ...functions the currents and voltages coming from the input transformers are digitised in the analogue section of the main processor module Every analogue input channel is defined as being either single or three phase C t s three phase protection single phase protection single phase metering core balance V t s three phase Y connected single phase A protection function can only be used in a three pha...

Page 49: ...control and protection output signals provide the following facilities external signalling via LED s external signalling via relays event recording control of tripping relays external signalling via the communications interface external signalling via distributed output units 500RIO11 output of interlocking data The following applies to external signals via a signalling relay or a LED A signalling...

Page 50: ...ernally for display The input variables measured by the protection functions are available at the station control level via the communication interface They can also be viewed locally on a PC personal computer running the operator program or on the local display unit LDU on the frontplate Their values are referred to the sec ondary voltages and currents at the input of the REG 316 4 scheme recordi...

Page 51: ...ype of A D converter Choose either EA62 or EA63 to correspond to the A D converter unit inserted in the longitudinal line differential protection on VC61 A D converter on 316VC61 EA6 MasterS short data transmission distance EA6 SlaveS short data transmission distance EA6 MasterL long data transmission distance EA6 SlaveL long data transmission distance EA6 MstFoxS short data trans distance using F...

Page 52: ...25 µm SM single mode optical cable 9 125 µm Setting OFC type EA6 S EA6 L MM 26 20 dBm 16 13 dBm SM 32 22 dBm 20 17 dBm Select the setting such that taking the attenuation to be ex pected due to the optical cable into account the power at the receiving end is between 34 dBm and 22 dBm Measure the signal strength at the receiving end to make sure that it is within this range Note Take care when meas...

Page 53: ... in the Data Sheet see Section 8 Examples of applying the various input transformer modules are shown in Fig 3 1 and Fig 3 2 Slot Nr 1 Defines the type of I O board in slot 1 Not used 316DB61 316DB62 or 316DB63 Slot Nr 2 Defines the type of I O board in slot 2 Not used 316DB61 316DB62 or 316DB63 Slot Nr 3 Defines the type of I O board in slot 3 Not used 316DB61 316DB62 or 316DB63 Slot Nr 4 Defines...

Page 54: ...ABB Switzerland Ltd REG 316 4 1MRB520049 Uen Rev F 3 16 Fig 3 1 Application examples for input transformer configuration codes K61 to K66 PCT protection c t MCT metering c t VT v t ...

Page 55: ...REG 316 4 1MRB520049 Uen Rev F ABB Switzerland Ltd 3 17 14 13 12 11 18 17 15 16 Fig 3 2 Application of input transformer configuration K67 for 100 ground fault protection ...

Page 56: ... with the IEC60870 5 103 protocol S and T phases of three phase c t and v t channels assume the same value as R phase Edit A D channel ref val The reference value settings enable differences between the ratings of protected unit c t or v t and protection to be compen sated They are a factor which can be set in the range 0 5 to 2 The setting for R phase applies also to the other two phases of three...

Page 57: ...eferred to the rated current of the protected unit Effects of changing the reference values The protection function settings parameters expressed in relation to IN and UN are automatically adjusted to the new reference values Edit A D channel comment Facility is provided for the user to enter a comment for each analogue channel which is displayed together with the channel type when the correspondi...

Page 58: ... or Edit trip outputs providing the LEDSigMode parameter was also set to latching beforehand Note that the green LED1 standby signal cannot be set to a latching mode In the Edit binary inputs menu up to 30 pairs of consecutive binary inputs can be combined to form double signals A runtime supervision can also be configured for each of them 3 4 5 Edit system parameters see Section 5 5 6 The setting...

Page 59: ...active SignalAddr MMC is on SignalAddr ER InjTstEnable BinaryAddr F ExtReset BinaryAddr F Enable Test BinaryAddr T Rem Setting BinaryAddr F ParSet2 BinaryAddr F ParSet3 BinaryAddr F ParSet4 BinaryAddr F ParSet1 SignalAddr ER ParSet2 SignalAddr ER ParSet3 SignalAddr ER ParSet4 SignalAddr ER Modem Error SignalAddr ER QuitStatus SignalAddr ER MVB PB Warn SignalAddr ER MVB PB Crash SignalAddr ER PB BA...

Page 60: ...signals reset as soon as the condition causing them disappears In all three latching modes the LED s can be reset either by selecting the menu item Latch Reset in the RESET menu on the local control unit or by briefly activating the ExtReset binary input Only those LED s latch in the on state that are configured to do so according to Section 3 4 4 Confirm Pars switches the parameter confirm mode o...

Page 61: ...jTstEnable This input is for enabling and disabling the test mode It is normally used in conjunction with the test adapter Type XX93 or 316 TSS 01 and assigned to the binary input OC 101 If used with the test adapter XX93 it has to be configured to invert the signal F operating mode T test mode xx all binary inputs Caution The stand by signal green LED 1 is not influenced by an active input An act...

Page 62: ...tical link between two longitudinal differential relays This signal is generated instantly in the event of an error see Section 3 8 Data transmission from REL 316 4 The diagnostic function reports this error after a delay of 80 ms i e only when it is certain that the communications channel is permanently disturbed QuitStatus Signals that the reset button on the front of the unit has been operated ...

Page 63: ...ing times Three phase measurement Inrush current restraint using the second harmonic detection of the highest phase current detection of the load current to determine whether the transformer is energised or not Compensation of phase group Compensation of c t ratio Scheme for three winding transformers phase by phase comparison of the highest winding cur rent with the sum of the currents of the oth...

Page 64: ...Ltd REG 316 4 1MRB520049 Uen Rev F 3 26 IV Measurements R phase summation current S phase summation current T phase summation current R phase restraining current S phase restraining current T phase restraining current ...

Page 65: ... 20 0 01 s1 Y Select CurrentInp1 CT VT Addr 0 a2 1 00 0 05 2 20 0 01 s2 y0 Select CurrentInp2 CT VT Addr 0 a3 1 00 0 05 2 20 0 01 s3 y0 Select CurrentInp3 CT VT Addr 0 BlockInp BinaryAddr F InrushInp BinaryAddr F HighSetInp BinaryAddr F Trip SignalAddr ER Trip R SignalAddr Trip S SignalAddr Trip T SignalAddr Inrush SignalAddr Stabilizing SignalAddr Explanation of Parameters ParSet 4 1 Parameter fo...

Page 66: ...g takes place regard less of whether the protected unit has just been energised or not This enables the time required to trip to be shortened for high internal fault currents InrushRatio Ratio of 2nd harmonic current content to fundamental cur rent above which an inrush condition is detected InrushTime Time during which the inrush detection function is active fol lowing initial energisation or an ...

Page 67: ...on of the circuit y star d delta z zigzag phase angle adjustment of the winding 3 voltage in rela tion to the winding 1 voltage in multiples of 30 CurrentInp3 defines the c t input channel for winding 3 The first channel R phase of the two groups of three phases must be specified The protection operates in a two winding mode if a third in put is not selected BlockInp Binary address used as blockin...

Page 68: ...t for signalling tripping by R phase Trip S Output for signalling tripping by S phase Trip T Output for signalling tripping by T phase Inrush Output for signalling inrush current Stabilizing Output for signalling IH b during through faults Note The differential protection function does not have a pick up sig nal Every time it trips the signal GenStart is set together with Trip providing the trippi...

Page 69: ...IN ID IN Restraint 1 2 3 b g v 1 2 3 I 1 IN b I 2 IN b HEST 965 007 C I I I I D 1 2 3 Operating differential current I I I H ì í ï î ï ü ý ï þ ï cos 1 2 0 0 0 a a a for cos for cos Restrain current where I I I I I I I I 1 1 2 3 2 1 2 3 1 1 2 Ð greatest of I I I a Fig 3 5 1 1 Operating characteristic Diff Transf ...

Page 70: ...k up setting of the differential protection for internal faults The lowest possible value should be chosen for g high sensi tivity to enable it to detect transformer earth faults and interturn faults in addition to phase faults The setting of g must not be too low however to avoid the danger of false tripping due to c t errors the maximum off load transformer current at the maximum short time syst...

Page 71: ...rough faults A typical setting is v 0 5 Restraint current b The restraint current b defines the point at which the character istic is switched The sloped section of the characteristic ensures that the relay remains stable during through faults with c t saturation The ability to switch between two different slopes enables the characteristic to adapt to different conditions The recommended setting f...

Page 72: ...e windings are used for this purpose The restrain current is either defined by the equation a os c I I I 2 1 H for 90 a 90 or is zero IH 0 for 90 a 270 The angle 2 1 I I Ð a The following vector diagram of the current on primary and sec ondary sides and of the differential current measured for a transformer on load was assumed I2 1 I 2 I I HEST 905 003a C a The following vector diagrams then resul...

Page 73: ...d be noted that the gradient of the characteristic is only switched to infinity if apart from IH I1 and I2 are also higher than b g b 0 0 5 1 1 5 HEST 905 003d C 0 75 0 25 0 5 ID IN IH N I Fig 3 5 1 2 Operating characteristic of the transformer differ ential protection for high through fault currents This characteristic however would scarcely be able to detect faults in the protected zone at throu...

Page 74: ...on zone Example Internal fault and rated current flowing through the transformer 0 1 I I 4 I I N 2 N 1 a 2 I I HEST 905 003f C 1 I I2 N N N 2 1 H N N N 2 1 I 2 1 I 1 I 4 cos I I I I 3 I I 4 I I I a D Internal faults will thus be reliably detected when a through cur rent is flowing even at the highest setting for v Increased basic setting g High The increased basic setting g High has been provided ...

Page 75: ...ifferential current I Inst The differential current setting I Inst facilitates fast tripping of high internal fault currents inhibits the detection of an inrush current The setting must be higher than any normal inrush current to be expected A typical value for power transformers of low to medium power is I Inst 12 IN Pick up ratio for detecting inrush The setting of this ratio determines the sens...

Page 76: ...ent of the transformer and not to the rated primary current of the c t 250 5 A 1000 5 A 25 MVA 110 kV 20 kV 131 A 722 A 1 2 HEST 905 004a C IB1 ITN1 131 A a I I CT TN 1 250 131 191 1 1 IB2 ITN2 722 A a I I CT TN 1 1000 722 138 2 2 The reference current is only chosen to be different from the transformer rated current if this should be necessary because of the setting range of factors a1 and a2 Dif...

Page 77: ... and a reference power has to be chosen which is used for all three windings All the settings of the pro tection are then referred to the reference currents calculated from the reference power 500 5 A 5 MVA 20 MVA 6 3 kV 600 5 A 458 A 577 A 1 2 3 250 5 A 25 MVA 110 kV 131 A 20 kV HEST 905 004b C Assuming the reference power SB to be 25 MVA the reference currents IB and the a factors become 91 1 13...

Page 78: ...D channels to match the pro tection to the different rated currents of c t s and transformer factors a1 a2 and a3 to compensate the different powers of the windings The a factors compensate the signals at the inputs of the dif ferential protection If the reference values of the A D channels are changed the changes apply to the entire protection system i e all functions and measured variables This ...

Page 79: ... t s or lack of c t s in the unit trans former feeder Fig 3 5 1 4 Alternative No 1 No c t s in the unit transformer feeder This alternative is mainly needed for hydroelectric power plants which have a relatively low auxiliaries requirement The disad vantage is that the zone of protection is unlimited in the direction of the unit transformer feeder with the possible hazard of false tripping for a f...

Page 80: ... son is the high fault level on the generator side of the unit transformer and the consequentially high thermal and dynamic stress on the c t s The reference value of the c t channel of the protection is de termined by the rated current of the generator and not of the unit transformer Alternative No 3 C t s installed in the unit transformer feeder on the auxiliaries side of the unit transformer Fi...

Page 81: ...witzerland Ltd 3 43 HEST 905 054 C G 800 5A 3000 5 A 18 kV 10 kA 30 MVA 18 6 kV 1 3 kA 10 1 A 10000 5 A 300 MVA 220 18 kV 0 8 10 kA 10000 5 A I 300 MVA GT UT Fig 3 5 1 4 The overall differential protection of a genera tor transformer unit ...

Page 82: ...ollowing arrangement is an example for two generators with a common step up transformer 1 2 3 Y d11 d11 HEST 905 004c C The factors are correspondingly s1 Y s2 d11 s3 d11 Factors s2 and s3 are defined according to their phase shift in relation to the HV side i e to windings 1 Note This setting for the vector group s2 d11 s3 d11 assumes that in relation to the protected unit the star point is symme...

Page 83: ...nt vectors for different groups of connection can be seen from the following illustrations For example for a Yd5 connected transformer R S T R S T I 1R I I 1R 1S 1T 2R 2S 2T 150 I I I I I HEST 905 005 C Star connected primary Delta connected secondary Phase angle between the currents of the same phase on both sides 5 x 30 150 I I 1r compensated 1R 1S 2r compensated 2R 1 3 I I I ì í ï î ï R S T R S...

Page 84: ...y1 R S T Dy5 R S T 2 1R 2R I 1 R S T R S T 1 2 I 1R 2R I I1R 2R I Yz7 Yz11 R S T R S T R S T R S T R S T R S T I 1R 2R I 1 2 I 1R 2R I 1 2 Yz1 Yz5 R S T R S T R S T R S T I 1R 2R I HEST 905 007 C R S T I1R 2R I Dy7 R S T I 1R 2R I R S T R S T Dy11 Dd0 Dd6 I 1R 2R I 1 2 1 1 2 2 1 1 2 2 ...

Page 85: ... Rev F ABB Switzerland Ltd 3 47 R S T I 1R 2 R S T I 1R 2 Dz8 Dz10 R S T 1 2R I R S T 1 2R I I 1R 2R I R S T 2 R S T 1 R S T 2 R S T 1 Dz4 Dz6 I1R 2R I I 1R 2R I R S T 2 Dz0 R S T 1 R S T 2 R S T 1 Dz2 I 1R 2R I HEST 905 008 C ...

Page 86: ...0 0 1 C 1 1 0 1 3 D 1 1 0 1 3 E 1 0 1 1 3 F 1 0 1 1 3 G 2 1 1 1 3 H 2 1 1 1 3 J 1 2 1 1 3 K 1 2 1 1 3 L 1 1 2 1 3 M 1 1 2 1 3 N 0 1 0 1 O 0 1 0 1 Table 3 5 1 1 Compensation matrices and associated ampli tude factors a Star connection on winding 1 Two winding transformer Group Comp matrix Comp matrix Winding 1 Winding 2 Yy0 E E Yy6 E F Yd1 E A Yd5 C B Yd7 E B Yd11 C A Yz1 E G Yz5 C H Yz7 E H Yz11 C...

Page 87: ... EBA CNB EBB CNA EBG CNH EBH CNG d11 CAC CAD CAO CAB CAN CAA CAK CAH CAJ CAG z1 EGE EGF EGA CKB EGB CKA EGG CKH EGH CKG z5 CHC HD CHO CHB CHN CHA CHK CHH CHJ CHG z7 EHE EHF EHA CJB EHB CJA EHG CJH EHH CJG z11 CGC CGD CGO CGB CGN CGA CGK CGH CGJ CGG Table 3 5 1 2 Summary of the compensation matrices for a three winding transformer with a star connection on winding 1 b Delta connection on winding 1 ...

Page 88: ...3 5 1 1 with an amplitude factor of 1 compensation matrix for winding 3 C 1 1 0 see Table 3 5 1 1 with an amplitude factor of 1 3 The function currents then become Function currents calculated Currents measured at the c t s Winding 1 I I I r s t 1 1 1 1 3 æ è ç ç ç ö ø 1 1 0 0 1 1 1 0 1 1 1 1 æ è ç ç ç ö ø æ è ç ç ç ö ø I I I R S T Winding 2 I I I r s t 2 2 2 1 æ è ç ç ç ö ø æ è ç ç ç ö ø æ è ç ç ...

Page 89: ...G 316 4 1MRB520049 Uen Rev F ABB Switzerland Ltd 3 51 Typical values g 0 3 IN v 0 5 b 1 5 g High 0 75 IN I Inst 12 IN InrushRatio 10 InrushTime 5 s a1 a2 a3 have to be calculated s1 s2 s3 depend on plant ...

Page 90: ...ABB Switzerland Ltd REG 316 4 1MRB520049 Uen Rev F 3 52 ...

Page 91: ... operating times three phase measurement optimised for the differential protection of generators i e no inrush restraint no compensation of group of connection only two measuring inputs suppression of DC off set suppression of harmonics C Inputs and outputs I Analogue inputs current 2 sets of 3 inputs II Binary inputs blocking III Binary outputs tripping R phase trip S phase trip T phase trip IV M...

Page 92: ...eters ParSet 4 1 Parameter for determining in which set of parameters a par ticular function is active see Section 5 11 Trip defines the Tripping channel activated by the tripping output of the function tripping logic g Setting Basic setting sensitivity g of the operating characteristic v Setting Pick up ratio slope of the operating characteristic CurrentInp defines the A D input channels The firs...

Page 93: ...as initiated by S phase Trip T signals that tripping was initiated by T phase Note The differential protection function does not have a pick up sig nal Every time it trips the signal GenStart is set together with Trip providing the tripping command is configured to be re corded as an event Fig 3 5 2 1 Operating characteristic of the generator differential protection Diff Gen ...

Page 94: ...rent Since however a small differential current flows during normal operation false tripping could result if g is set too low The spu rious differential current is usually due to imbalances of c t er rors and c t burdens Allowing for an unwanted differential current a typical setting is 0 1 IN Higher values have to be set for g should for example the c t s on opposite sides of the protected unit h...

Page 95: ...rator differential protection b has a fixed setting of 1 5 compare this with Figures 3 5 1 2 and 3 5 1 3 for transformer differential protection The v setting should be low enough to make the protection sensitive to faults when load current is flowing but high enough to avoid false tripping during through faults A typical setting is v 0 25 A higher setting v 0 5 is chosen in cases where the transi...

Page 96: ...ABB Switzerland Ltd REG 316 4 1MRB520049 Uen Rev F 3 58 ...

Page 97: ...ion back up protection or for monitoring a current minimum B Features insensitive to DC component insensitive to harmonics single or three phase measurement maximum respectively minimum value detection in the three phase mode detection of inrush currents C Inputs and outputs I C t v t inputs Current II Binary inputs Blocking III Binary outputs pick up tripping IV Measurements current amplitude ...

Page 98: ... in which set of parameters a par ticular function is active see Section 5 11 Trip defines the tripping channel activated by the tripping O P of the function matrix tripping logic Delay Time between the function picking up and tripping I Setting Pick up current setting Forbidden settings 1 6 IN when supplied from metering cores 0 2 IN when supplied from protection cores MaxMin defines operation as...

Page 99: ...ks during inrush currents if one phase exceeds setting NrOfPhases defines whether single or three phase measurement CurrentInp defines the c t input channel All current I P s may be selected In the case of three phase measurement the first channel R phase of the group of three selected must be specified BlockInp I P for blocking the function F not blocked T blocked xx all binary I P s or O P s of ...

Page 100: ...ions but should be low enough on the other to detect the lowest fault current that can occur The margin which has to be allowed between the maximum short time load current and the setting must take account of the tolerance on the current setting the reset ratio The maximum short time load current has to be determined ac cording to the power system conditions and must take switching operations and ...

Page 101: ...e over current units on the power system The zone of protection of our overcurrent function extends to the location of the next down stream overcurrent relay Should the downstream relay fail to clear a fault the overcurrent function trips slightly later as a back up protection Setting MaxMin This parameter enables the following operating modes to be selected MIN 3ph Pick up when the highest phase ...

Page 102: ...ion of the second harmonic component of the current I2h in relation to the funda mental frequency component I1h evaluation of the amplitudes The output of the function is disabled when the ratio I2h I1h ex ceeds 10 and enabled again when it falls below 8 There is no setting for the peak value of I2h I1h The function can operate with inrush blocking in both the single and three phase mode parameter...

Page 103: ...s processes instantaneous values and is therefore fast and largely independent of frequency stores the peak value following pick up no suppression of DC component no suppression of harmonics single or three phase measurement maximum value detection in the three phase mode adjustable lower frequency limit fmin C Inputs and outputs I C t v t inputs current II Binary inputs blocking III Binary output...

Page 104: ...art SignalAddr ER Explanation of parameters ParSet 4 1 Parameter for determining in which set of parameters a par ticular function is active see Section 5 11 Trip defines the tripping channel activated by the tripping output of the function matrix Delay Time between the function picking up and tripping I Setting Pick up current setting Setting restrictions not 1 6 IN when supplied from metering co...

Page 105: ...e measurement CurrentInp defines the c t input channel All current inputs may be selected In the case of three phase measurement the first channel R phase of the group of three selected must be specified BlockInp Binary address used as blocking input F not blocked T blocked xx all binary inputs or outputs of protection functions Trip Output for signalling tripping Start Output for signalling pick ...

Page 106: ... of rated frequency It is therefore able to protect units with syn chronous starting equipment during the starting sequence before reaching system frequency e g gas turbine sets with solid state starters The function detects when the instantaneous value of the input current exceeds the peak value corresponding to the setting For example for a setting of 10 IN it will pick up when the input cur ren...

Page 107: ...g current Output signal Fig 3 5 4 1 Operation of the peak value overcurrent function Typical settings a Peak value phase fault protection I Setting according to application Delay 0 01 s f min 40 Hz b Phase fault protection of a machine with synchronous starter during start up I Setting 1 5 IN Delay 5 s f min 2 Hz ...

Page 108: ...ABB Switzerland Ltd REG 316 4 1MRB520049 Uen Rev F 3 70 ...

Page 109: ...tores the maximum current value after pick up resets either after recovery of the system voltage or after tripping processes the positive sequence component of the voltage insensitive to DC component and harmonics single or three phase measurement with detection of the highest phase value in the three phase mode C Inputs and outputs I Analogue inputs current voltage II Binary inputs blocking III B...

Page 110: ...Inp AnalogAddr 0 BlockInp BinaryAddr F Trip SignalAddr ER Start SignalAddr ER Explanation of parameters ParSet 4 1 Parameter for determining in which set of parameters a par ticular function is active see Section 5 11 Trip defines the tripping channel activated by the tripping output of the function tripping logic Delay Time between the function picking up and tripping Current Pick up current sett...

Page 111: ... of three phase measurement the first channel R phase of the group of three selected must be specified VoltageInp Defines the analogue voltage input channel All three phase voltage inputs may be selected A phase to phase voltage must be used for measurement This is derived from the set phase and the lagging phase BlockInp Binary address used as blocking input F Not blocked T Blocked xx all binary ...

Page 112: ...tors and genera tor transformer units for which a fault current can fall below the pick up of the overcurrent protection before it has an opportunity to trip Apart from the influence of a DC component a decaying AC component can only occur on a generator the steady state fault current of which is very low because of the large synchronous reactance Xd typical of modern generators see Fig 3 5 5 1 Th...

Page 113: ... power system concerned and must take ac count of switching operations load surges and fast response excitation Fig 3 5 5 2 I N I Maximum short time load current C urrent Delay Minimum fault current HEST 905 013 C Fig 3 5 5 2 Operating characteristic of a definite time overcur rent function IN rated current of the protection Delay The delay is used to achieve discrimination of the overcurrent func...

Page 114: ...tions prevailing during symmetrical and asymmetrical faults the positive sequence component of the three phase system is evaluated A setting well below the lowest voltage that can occur during normal load conditions is chosen Fig 3 5 5 3 Hold Voltage setting for latching HEST 905 014 C U N U Minimum short time load voltage Fig 3 5 5 3 Operating characteristic of the undervoltage control unit UN ra...

Page 115: ...as not already been done with the aid of the reference value of the A D channel Example Generator rated current IGN 4 000 A C t rated current IN1 5 000 A Typical value 1 5 referred to the rated current of the protection Compensated setting 15 15 4000 5000 12 1 I I GN N since the rated voltages of generator and v t s are generally the same compensation of the undervoltage setting is seldom necessar...

Page 116: ...ABB Switzerland Ltd REG 316 4 1MRB520049 Uen Rev F 3 78 ...

Page 117: ... Fig 3 5 6 1 according to British Standard 142 c 0 02 normal inverse c 1 very inverse and long time earth fault c 2 extremely inverse insensitive to DC component insensitive to harmonics single or three phase measurement detection of the highest phase value in the three phase mode wider setting range than specified in B S 142 C Inputs and outputs I C t v t inputs current II Binary inputs Blocking ...

Page 118: ... Explanation of parameters ParSet 4 1 Parameter for determining in which set of parameters a par ticular function is active see Section 5 11 Trip defines the tripping channel activated by the tripping O P of the function matrix tripping logic c Setting Setting for the exponential factor determining the shape of the operating characteristic according to BS 142 or for se lecting the RXIDG characteri...

Page 119: ... measurement the first channel R phase of the group of three selected must be specified IB Setting Base current for taking account of differences of rated current IN BlockInp defines the input for an external blocking signal F not used T function always blocked xx all binary inputs or outputs of protection functions Trip Tripping signal Start Pick up signal ...

Page 120: ...such that it is always above the load current To this end the relay has a reference current IB that is set the same as the load current of the protected unit IB1 The reference current IB determines the relative position of the relay characteristic which is enabled when the current exceeds the reference current by a given amount I Start By setting the reference current IB to equal the load current ...

Page 121: ...setting for I Start is 1 1 IB Choice of characteristic c Setting The constant c Setting determines the shape of the IDMT characteristic The settings for the standard characteristics according to B S 142 are normal inverse c 0 02 very inverse and long time earth fault c 1 00 extremely inverse c 2 00 Fig 3 5 6 1 Operating characteristic of the IDMT overcurrent function c Setting can also be set to R...

Page 122: ...on t k I IB 1 1 Assuming a grading time of 0 5 s at 6 times the base current IB is required the factor k1 for each of the relays is given by k1 5 t This produces for operating times between 0 5 and 2 5 s the following settings for k1 t s k1 s 0 5 2 5 1 5 1 5 7 5 2 10 2 5 12 5 The characteristics according to BS 142 are set as follows normal inverse k1 0 14 s very inverse k1 13 5 s extremely invers...

Page 123: ...sensitive three phase phase fault protection insensitive to DC component insensitive to harmonics voltage memory feature for close faults C Inputs and outputs I C t v t inputs current voltage II Binary inputs Blocking PLC receive III Binary outputs start start R start S start T forwards measurement backwards measurement tripping IV Measurements current amplitude of the three phase currents IR IS I...

Page 124: ... ER Start SignalAddr Start R SignalAddr ER Start S SignalAddr ER Start T SignalAddr ER MeasFwd SignalAddr MeasBwd SignalAddr Explanation of parameters ParSet 4 1 Parameter for determining in which set of parameters a par ticular function is active see Section 5 11 Trip defines the tripping channel activated by the function s tripping output matrix tripping logic CurrentInp defines the c t input ch...

Page 125: ...ower direction trip block MemDuration Time during which the power direction last determined remains valid Receive Input for the signal from the opposite end of the line T not used xx all binary inputs or outputs of protection functions Ext Block F not blocked xx all binary inputs or outputs of protection functions Trip Tripping signal Start Pick up signal Start R R phase pick up signal Start S S p...

Page 126: ...ng must be chosen high enough to prevent false tripping or alarms from taking place and low enough to reliably detect the minimum fault current The setting must be sufficiently above the maximum transient load current and allow for c t and relay inaccuracies the reset ratio The maximum transient load current has to be determined ac cording to the power system operating conditions and take ac count...

Page 127: ... addi tional criterion for preserving discrimination compared with non directional overcurrent protection The directional sensitivity is 180 in relation to the reference voltage This is illustrated in the following diagrams The angles given apply for connection ac cording to the connections in Section 12 UST IR UR US UT URS UST UTR IR j a 45 Operation L L w M ax sensitivity Restraint j a cos neg j...

Page 128: ...ample the phase to phase val ues are calculated for Y connected v t s v t type UTS while the input voltages are used directly for delta connected v t s v t type UTD Delay The delay enables the protection to be graded with other time overcurrent relays to achieve discrimination Its setting is thus chosen in relation to the timer settings of upstream and down stream protective devices The zone of pr...

Page 129: ...t of the function at the opposite end of the line e g via a PLC channel when it is measuring a fault in the reverse di rection This signal prevents the respective directional overcur rent function from tripping because the fault cannot be in the zone between them The functions therefore have to allow time i e the wait time for the signal from the opposite line terminal to be received If none is re...

Page 130: ...ility for setting how the protection must respond after this time or in the event that the circuit breaker is closed onto a fault and no voltage could be memo rised beforehand The two possible settings are the protection can trip or it can block Time during which the memorised direction is valid The MemDuration setting determines how long the last valid di rection measurement shall be used The set...

Page 131: ... scheme B Features directionally sensitive three phase phase fault protection operating characteristics see Fig 3 5 8 1 according to British Standard B S 142 c 0 02 normal inverse c 1 very inverse und long time earth fault c 2 extremely inverse insensitive to DC component insensitive to harmonics voltage memory feature for close faults C Inputs and outputs I C t v t inputs current voltage II Binar...

Page 132: ...n Rev F 3 94 IV Measurements current amplitude of the three phase currents IR IS IT active power A positive measurement indicates the forwards direction IR UST IS UTR IT URS voltage amplitude Amplitudes of the phase to phase voltages UST UTR URS ...

Page 133: ... 0 01 MemDirMode Trip Select MemDuration s 2 00 0 20 60 00 0 01 Receive BinaryAddr T Ext Block BinaryAddr F Trip SignalAddr ER Start SignalAddr Start R SignalAddr ER Start S SignalAddr ER Start T SignalAddr ER MeasFwd SignalAddr MeasBwd SignalAddr Explanation of parameters ParSet 4 1 Parameter for determining in which set of parameters a par ticular function is active see Section 5 11 Trip defines...

Page 134: ... shift of the characteristic t min Definite minimum operating time operating characteristic constant IB Setting Base current for taking account of differences of rated current IN tWait Time allowed for the directional decision to be received MemDirMode determines the response of the protection after the time set for memorising power direction trip block MemDuration Time during which the power dire...

Page 135: ...tzerland Ltd 3 97 Start Pick up signal Start R R phase pick up signal Start S S phase pick up signal Start T T phase pick up signal MeasFwd signals measurement in the forwards direction MeasBwd signals measurement in the backwards direction ...

Page 136: ... that it is above the load current The function however has a base current setting which is set to the full load current IB1 of the protected unit The base current setting determines the position of the basic characteristic The characteristic is enabled when the base current is exceeded by a preset amount I Start The adjustment of the base current IB to the load current IB1 of the protected unit i...

Page 137: ...tart The IDMT characteristic is enabled when the current exceeds the setting I Start A typical setting for I Start is 1 1 IB Choice of characteristic c Setting The constant c Setting determines the shape of the IDMT char acteristic The settings for the standard characteristics according to B S 142 are normal inverse c 0 02 very inverse and long time earth fault c 1 00 extremely inverse c 2 00 Fig ...

Page 138: ...the very inverse characteristic the constant c 1 and the factor k1 13 5 The operating time t is given by the equation t k I IB 1 1 Assuming a grading time of 0 5 s at 6 times the base current IB is required the factor k1 for each of the relays is given by k1 5 t This produces for operating times between 0 5 and 2 5 s the fol lowing settings for k1 t s k1 s 0 5 2 5 1 5 1 5 7 5 2 10 2 5 12 5 The cha...

Page 139: ...n L L w M ax sensitivity Restraint j a cos neg j j a cos pos HEST 005 001 C b a j phase angle between current and voltage positive angle a Characteristic angle L Border line between operating and restraint areas a Definition of current and voltage b Operating characteristic Fig 3 5 8 2 Vector diagram for a fault in the forwards direction on R phase The function determines the power direction by me...

Page 140: ...rse meas R Reverse meas S Reverse meas T Forwards meas Reverse meas Fig 3 5 8 3 Block diagram td Delay t tWait Where directional functions are configured in both line terminals each can send a signal from its MeasBwd output to the Re ceive input of the function at the opposite end of the line e g via a PLC channel when it is measuring a fault in the reverse di rection This signal prevents the resp...

Page 141: ...fter this time the last valid direction is used for an adjustable period see next paragraph MemDirMode provides facility for setting how the protection must respond after this time or in the event that the circuit breaker is closed onto a fault and no voltage could be memo rised beforehand The two possible settings are the protection can trip or it can block Time during which the memorised directi...

Page 142: ...ABB Switzerland Ltd REG 316 4 1MRB520049 Uen Rev F 3 104 ...

Page 143: ...eating of the rotor due to asymmetrical load B Features definite time delay insensitive to DC component insensitive to harmonics three phase measurement C Inputs and outputs I Analogue inputs current II Binary inputs blocking III Binary outputs pick up tripping IV Measurements proportion of negative sequence current component I2 1 3 IR a2 IS a IT ...

Page 144: ... parameters a par ticular function is active see Section 5 11 Trip defines the tripping channel activated by the tripping output of the function tripping logic Delay time delay between pick up and tripping I2 Setting NPS current setting for tripping Setting restriction not 0 05 IN when supplied from protection cores CurrentInp defines the A D current input channel All three phase current inputs ma...

Page 145: ...REG 316 4 1MRB520049 Uen Rev F ABB Switzerland Ltd 3 107 Trip Output for signalling tripping Start Output for signalling pick up ...

Page 146: ...e sequence stator current I2 which is therefore the quantity monitored The definite time NPS function is intended for systems where asymmetries are of longer duration and do not change fre quently This generally applies in the case of small to medium generators Two NPS stages are used one for alarm and one for tripping The maximum continuous NPS current rating I2 is stated by the generator manufac...

Page 147: ...he one with the higher setting must be faster Compensating the frequently differing rated currents of generator and c t s is also recommended for the NPS protection The corresponding compensated setting is given by Setting calculated setting I I GN N1 Typical settings 1st stage alarm I2 Setting 0 1 IN Delay 5 s 2nd stage tripping I2 Setting 0 15 IN Delay 10 s ...

Page 148: ...ABB Switzerland Ltd REG 316 4 1MRB520049 Uen Rev F 3 110 ...

Page 149: ...lay according to level of NPS see Fig 3 5 10 1 wide setting ranges for the parameters determining the oper ating characteristic adjustable rate of counting backwards when the overload disappears cooling rate of thermal image insensitive to DC components insensitive to harmonics three phase measurement C Inputs and outputs I Analogue inputs current II Binary inputs blocking III Binary outputs pick ...

Page 150: ...aryAddr F Trip SignalAddr ER Start SignalAddr Explanation of parameters ParSet 4 1 Parameter for determining in which set of parameters a par ticular function is active see Section 5 11 Trip defines the tripping channel activated by the tripping output of the function tripping logic k1 Setting Multiplier Operating characteristic constant k2 Setting Continuously permissible NPS I2 IB and operating ...

Page 151: ... may be selected The first channel R phase of the group of three selected must be specified IB Setting Reference base current for compensating a difference in relation to IN BlockInp Binary address used as blocking input F Not blocked T Blocked xx all binary inputs or outputs of a protection function Trip Output for signalling tripping Start Output for signalling pick up Fig 3 5 10 1 Operating cha...

Page 152: ...sation using the reference value of the A D channel has not been made the reference current IB for the protection is calculated from the rated currents of the generator IGN and the c t s IN1 and IN2 as follows IB I I I GN N2 N 1 The setting is the ratio IB IN where IN is the rated current of the protection otherwise IB Setting would be 1 0 IN The following two parameters are required from the manu...

Page 153: ...16 4 1MRB520049 Uen Rev F ABB Switzerland Ltd 3 115 Typical settings IB Setting according to protected unit k1 Setting 10 0 s k2 Setting according to protected unit t min 10 0 s t max 1000 0 s t Reset 10 0 s ...

Page 154: ...ABB Switzerland Ltd REG 316 4 1MRB520049 Uen Rev F 3 116 ...

Page 155: ...th fault protection 95 rotor earth fault protection with ancillary unit YWX 111 interturn protection B Features insensitive to DC component insensitive to harmonics single or three phase measurement highest or lowest phase value detection in the three phase mode C Inputs and outputs I Analogue inputs voltage II Binary inputs blocking III Binary outputs pick up tripping IV Measurements voltage ampl...

Page 156: ...Addr ER Start SignalAddr ER Explanation of parameters ParSet 4 1 Parameter for determining in which set of parameters a par ticular function is active see Section 5 11 Trip defines the tripping channel activated by the tripping output of the function tripping logic Delay time delay between pick up and tripping V Setting Voltage setting for tripping MaxMin defines operation as overvoltage or underv...

Page 157: ...ether single or three phase measurement VoltageInp defines the A D input channel All voltage inputs may be selected In the case of three phase measurement the first channel R phase of the group of three selected must be specified BlockInp Binary address used as blocking input F Not blocked T Blocked xx all binary inputs or outputs of a protection function Trip Output for signalling tripping Start ...

Page 158: ...ing The first stage is intended for moderate overvoltages of long du ration The second stage provides protection against high overvoltages and is set to 70 of the stator test voltage Where the rated voltages of the protected unit and the v t s differ the primary pick up value in p u does not agree with the setting of the protection and this has to be compensated using the reference value of the A ...

Page 159: ...setting This setting is not per mitted if the function is set to single phase measurement HEST 905 055 C UN 0 t U Delay Delay Stage 1 Stage 2 V Setting V Setting Fig 3 5 11 1 Operating characteristic of the definite time over voltage function UN rated voltage of the protection Typical settings Stage 1 V Setting 1 15 UN Delay 2 s MaxMin MAX 1ph Stage 2 V Setting 1 4 UN Delay 0 1 s MaxMin MAX 1ph ...

Page 160: ...ee Fig 3 5 11 2 It is normal to limit the zone to 95 to avoid any risk of false tripping The stator E F function is connected either to the v t at the stator star point or to the v t s at the gen erator terminals In either case the function monitors the dis placement of the star point caused by a stator E F The corre sponding off set voltage becomes a maximum for an E F at a generator terminal and...

Page 161: ...generator circuit form a potential divider that determines the potential of the generator star point see Fig 3 5 11 3a The value of the capacitance C is usually too low to reliably hold the star point below the pick up setting of the protection For this reason the generator star point is grounded via a resistor RE see Fig 3 5 11 4 which ensures that the potential of the star point remains below th...

Page 162: ... rent In view of the damage an E F current can cause especially to the laminations of the stator core the maximum E F current should be limited to 20 A for 10 s i e the grounding resistor RE must not be too small Tripping by the E F protection is delayed by 0 5 s to avoid any risk of false tripping during transient phenomena Designing a scheme for connection to the generator star point Alternative...

Page 163: ...aturation of the v t The specification of a relatively high overvoltage factor such as 1 9 is therefore recommended V t rated voltages U U n GN 1 3 UGN generator rated voltage U2n 100 V should nothing else be specified The minimum value of the resistor REmin R U I E GN E min max 3 where IEmax 20 A The equation for determining the maximum value of the ground ing resistor REmax 95 scheme can be deri...

Page 164: ...0 W I U R A E GN E max 3 12000 3 750 9 24 Specification 1 grounding resistor 750 W 10 A 10 s 1 v t 12000 3 100 V single phase insulation b HV system solidly grounded Only 1 6 of the voltage UHV is effective REmin 12000 3 20 346 W REmax 0 05 12 6 314 3 10 110 6 5790 9 W Chosen RE 3000 W I U R A E GN E max 3 12000 3 3000 2 3 Specification 1 grounding resistor 3000 W 2 3 A 10 s 1 v t 12000 3 100 V si...

Page 165: ...p proximately equal the capacitive component of the E F current IEmax IC I C U C GN 3 3 w Rated data of the grounding transformer U U n GN 1 3 U2n 100 200 400 V or 115 230 460 V I1n IEmax I2n Ie where I I U U e E n n max 1 2 The grounding resistor Re connected to the secondary is give by R U I U U e GN E n n æ è ç ö ø 3 2 1 2 max or for U U n GN 1 3 R U U I e n n E 2 2 1 max Rated power of the gro...

Page 166: ...ator E F protection with a grounding transformer at the star point Example 2 UGN 12 kV IC 10 A IEmax IC 10 A U V n 1 12000 3 6930 I1n 10 A U2n 200 V I2n Ie 10 6930 200 346 A Re 200 6930 10 0577 2 W Sn U1n I1n 6930 10 70 kVA Specification 1 grounding transformer 70 kVA 10 s 50 Hz 6930 200 V 10 346 A 1 resistor 0 577 W 346 A 10 s 1 interposing v t 10 VA 50 Hz 200 100 V only necessary if U2n 100 V ...

Page 167: ...the rated voltage of the generator U1n UGN 12 kV U2n 230 V I1n IEmax IC 10 A I2n Ie IEmax U U A n n 1 2 10 12000 230 522 Re æ è ç ö ø 12000 3 10 230 12000 0 254 2 W Sn 12000 10 120 kVA Specification 1 grounding transformer 120 kVA 10 s 50 Hz 12000 230 V 10 522 A 1 resistor 0 254 W 522 A 10 s 1 interposing v t 10 VA 50 Hz 230 100 V ...

Page 168: ...ever possible the secondary current does not exceed 250 A HEST 905 033 C HV U 2 3 C12 HV LV GN 1 U I E U R e I e 3 C I E I E 3 I 1 e I I 1 I 1 I 1 U U 3n 4n U U 1n 2n Generator Step up transformer Fig 3 5 11 6 Stator E F protection with grounding transformer at the generator terminals For an E F at a generator terminal the voltage of the phase concerned becomes zero and the healthy phases are at p...

Page 169: ... influence of the v t reactance A mean value of 0 7 may be assumed for v t s To ensure that the E F protection remains stable for an E F on the HV side of the step up transformer the resistor may not be less than R U C U U U e GN HV n n max æ è ç ö ø 0 05 6 3 12 2 1 2 w The secondary current Ie is then chosen and the secondary rated voltage calculated U2n U1n I I E e 3 The maximum voltage across R...

Page 170: ...an Remin the protection is stable at the chosen current IEmax and the value of the resistor Re can be determined in relation to Remin Ie 200 A U V n 2 6930 15 3 200 173 It then follows that Remin 0 60 10 4 1732 1 80 W Remax 1 81 10 4 1732 5 42 W Re 1 80 W At Ie 200 A the voltage drop across the resistor Re is URe Re Ie 1 8 200 360 V Neglecting load current the maximum voltage across the broken del...

Page 171: ... 5 UGN 27 kV UHV 400 kV C12 3 x 10 9 F x 314 1 s HV system solidly grounded IE 15 A U U V n GN 1 3 27000 3 15600 R U U e n n min æ è ç ö ø 27000 3 15 3 15600 27 10 2 2 6 2 2 R U U e n n max æ è ç ö ø 005 27 6 314 3 10 400 6 3 15600 132 10 9 2 2 6 2 2 Ie 250 A chosen U V n 2 15600 15 3 300 260 The resistor Re is chosen according to Remin Re 27 10 6 2602 1 825 W Re Ie 1 825 300 547 V 3 U2n 3 260 780...

Page 172: ...nance phenomena and for this reason there is a resistor across the broken delta as well Frequently the E F protection is only required to protect the cables and bar conductors because the transformers are protected by differential schemes and Buchholz relays In this case the E F protection setting is determined by the voltage offset for an E F at the lowest load voltage A typical setting for relia...

Page 173: ... the coupling capacitors and the capacitance of the rotor winding in series The second capacitive leg the resistive legs and a supply transformer for stepping down the v t voltage e g 100 V to the 50 V needed for the measuring circuit are in the ancillary unit Type YWX 111 A second transformer isolates the bridge from the input of the E F protection function An E F short circuits the capacitance o...

Page 174: ...ABB Switzerland Ltd REG 316 4 1MRB520049 Uen Rev F 3 136 Fig 3 5 11 7 Rotor E F protection function C1 C2 external coupling capacitances ...

Page 175: ... asymmetries the setting may not be lower than 5 UN A slight delay will prevent false tripping due to transients Both ends of the primaries of v t s must be designed for the full HV potential Since the star points of the generator and the v t s are con nected the high short circuit power of the generator would cause severe damage in the event of an interturn fault on a v t primary HV fuses should ...

Page 176: ...ABB Switzerland Ltd REG 316 4 1MRB520049 Uen Rev F 3 138 ...

Page 177: ...s processes instantaneous values and is therefore fast and largely independent of frequency stores the peak value following pick up no suppression of DC component no suppression of harmonics single and three phase measurement maximum value detection in the three phase mode adjustable lower frequency limit fmin C Inputs and outputs I C t v t inputs voltage II Binary inputs blocking III Binary outpu...

Page 178: ...alAddr ER Start SignalAddr ER Explanation of parameters ParSet 4 1 Parameter for determining in which set of parameters a par ticular function is active see Section 5 11 Trip defines the tripping channel activated by the tripping O P of the function matrix Delay Time between the function picking up and tripping V Setting Pick up voltage setting f min defines the minimum frequency for which measure...

Page 179: ...e selected In the case of three phase measurement the first channel R phase of the group of three selected must be specified BlockInp Binary address used as blocking input F not blocked T blocked xx all binary inputs or outputs of protection functions Trip Output for signalling tripping Start Output for signalling pick up ...

Page 180: ...ts K01 K17 REL 316 4 and K41 K47 REC 316 4 N f f N 1 3U Input transformer units K21 K24 RET 316 4 and K61 K68 REG 316 4 N f f N 2 25U where high speed protection is required The high speed is achieved by measuring the instantaneous value of the volt age and since DC components and harmonics are not sup pressed by eliminating the inertia of the digital input filter Compared with the normal voltage ...

Page 181: ...setting of 2 0 UN is possible the range of the analogue inputs of the input transformer units K01 K17 REL 316 4 and K41 K47 REC 316 4 is only 1 3 UN i e max 130 V or 260 V Y connected three phase v t s A setting of 1 3 UN corresponds to a pick up voltage of 130 V 3 at the input of the v t phase to neutral voltage Typical settings V Setting according to application Delay according to application f ...

Page 182: ...ABB Switzerland Ltd REG 316 4 1MRB520049 Uen Rev F 3 144 ...

Page 183: ...adjustable time delay insensitive to DC component in voltage and current insensitive to harmonics in voltage and current single or three phase measurement detection of the lowest impedance in the three phase mode underimpedance measurement enabled by undercurrent unit 0 1 IN C Inputs and outputs I Analogue inputs current voltage II Binary inputs blocking III Binary outputs pick up tripping IV Meas...

Page 184: ...Explanation of parameters ParSet 4 1 Parameter for determining in which set of parameters a par ticular function is active see Section 5 11 Trip defines the tripping channel activated by the tripping output of the function tripping logic Delay Time between the function picking up and tripping Z Setting Pick up impedance setting NrOfPhases defines whether single or three phase measurement CurrentIn...

Page 185: ...urement the first channel e g the phase to phase voltage R S of the group of three selected must be specified BlockInp Binary address used as blocking input F Not blocked T Blocked xx all binary inputs or outputs of a protection function Trip Output for signalling tripping Start Output for signalling pick up Fig 3 5 13 1 Operating characteristic of the underimpedance function ...

Page 186: ...ansformer The setting of the underimpedance function is determined by the short circuit reactance of the step up transformer Otherwise the distance between the step up transformer and the HV circuit breaker is mostly too short to be able to discriminate reliably with the impedance setting between faults in the generator trans former unit zone and faults on the other side of the HV circuit breaker ...

Page 187: ...REG 316 4 1MRB520049 Uen Rev F ABB Switzerland Ltd 3 149 HEST 905 019 C GT G I Z Protection zone Step up transformer Fig 3 5 13 2 Underimpedance protection ...

Page 188: ...tance of the step up transformer Ki Ku ratios of c t s and v t s IN1 IN2 c t rated currents UN1 UN2 v t rated voltages UTN ITN rated voltage and current of the step up transformer UN IN rated voltage and current of the underimpedance function The factor of 0 7 avoids any risk of false tripping for a fault on the HV system at the cost of a zone of protection that is shorter than differential protec...

Page 189: ...01 12 4 8 1000 120 5 100 0 073 It must not be forgotten that a current of at least 0 1 IN must flow before the underimpedance function is enabled Typical settings Z Setting 0 07 Delay 0 5 s Z Setting 0 07 0 07 0 HEST 935 003 C x z r j Fig 3 5 13 3 Operating characteristic of the underimpedance function Setting Z Setting 0 07 ...

Page 190: ...ABB Switzerland Ltd REG 316 4 1MRB520049 Uen Rev F 3 152 ...

Page 191: ...he operating characteristic correction of phase errors caused by input circuit adjustable time delay insensitive to DC component in voltage and current insensitive to harmonics in voltage and current single or three phase measurement detection of the lowest impedance distance from the centre of the circle underreactance measurement enabled by undercurrent unit 0 1 IN C Inputs and outputs I Analogu...

Page 192: ...Addr F Trip SignalAddr ER Start SignalAddr Explanation of parameters ParSet 4 1 Parameter for determining in which set of parameters a par ticular function is active see Section 5 11 Trip defines the tripping channel activated by the tripping output of the function tripping logic Delay Time between the function picking up and tripping XA Setting defines the first intersection of the impedance circ...

Page 193: ...phase of the group of three selected must be specified VoltageInp defines the A D input channel All voltage inputs may be selected In the case of three phase measurement the first channel e g the phase to phase voltage R S of the group of three selected must be specified Angle For compensating phase errors of the analogue input signals caused by the input circuit The setting can also be used to mo...

Page 194: ...ABB Switzerland Ltd REG 316 4 1MRB520049 Uen Rev F 3 156 Fig 3 5 14 1 Operating characteristic of the underreactance function with MaxMin MIN default ...

Page 195: ...dy state stability limit as defined by the load angle d 90 which can only be reached when the unit is underexcited i e for a capacitive power factor j When the voltage is measured at the generator terminals the locus of the stability limit of a gen erator transformer set is a circle as shown in Fig 3 5 14 3 The circle encloses the operating points of an underexcited generator down to the extreme p...

Page 196: ...oles is given by xq because the load angle d is also determined by this reactance The steady state stability limit is reach at this point when excitation is lost Point B is defined as half the transient reactance xd and deter mined by the voltage and current measured at the generator terminals when the unit is out of step and the generator is in phase opposition to the power system a Turboalternat...

Page 197: ... 3 3 X x U I K K B d GN GN i u 2 3 3 In the above equation xq is replaced by xd for salient pole units K I I i N N2 1 K U U I I u N N2 N N2 1 1 3 3 where xd xd unsaturated synchronous reactance and satu rated transient reactance of the generator in p u xq synchronous reactance in p u UGN IGN rated generator voltage and current Ki c t ratio Ku v t ratio UN1 UN2 v t rated voltages IN1 IN2 c t rated ...

Page 198: ...1 3 3 12000 100 120 C t s K i 5000 1 5000 X x U I K K A d GN GN i u 3 3 2 0 12000 3 4800 5000 120 3 208 3 W X x U I K K B d GN GN i u 2 3 3 0 25 2 12000 3 4800 5000 120 3 13 02 W The reactance settings referred to the protection ratings UN and IN become XA Setting X U I A N N 208 3 100 1 2 08 XB Setting X U I B N N 13 02 100 1 0130 013 ...

Page 199: ...he angle of their own phase i e for R phase the angle of the voltage UR the angle of the voltage signal has to be corrected in any event HEST 905023 C R S T U RS ST TR U U R S T R S T Reference voltage Vector diagram Phase compensation Angle 30 90 150 RS ST TR single phase measurement only The phase compensation can also be used when the character istic needs to be shifted by a given angle or flip...

Page 200: ... Reset Delay 3 s HEST 905 021 C E US 0 Steady state stability limit curve Characteristic of the underexcitation function Step up transformer T x d 2 x d x settings U I N N x generator synchronous reactance p u d x transformater short circuit reactance p u T d x T x x r XA set XB set XA Setting XB Setting Fig 3 5 14 3 Setting the characteristic of the underexcitation function according to the stead...

Page 201: ...F ABB Switzerland Ltd 3 163 HEST 935 017 C Pick up Integration Trip 0 0 0 TRIP Delay setting t R t R t R tR tint tint integrated time tR reset time Fig 3 5 14 4 Underreactance protection Effect of the integrator during power swings ...

Page 202: ...e circular characteristic This vector and the vector of the impedance measured at the generator terminals form a tri angle as shown in Fig 3 5 14 5 The protection picks up if the displayed impedance equals or is less than the radius of the cir cle z x X d d æ è ç ö ø 1 2 2 Example xd 2 Xd 0 2 z 1 2 2 01 0 95 HEST 905 034 C 0 x 2 d X z r d x U I Fig 3 5 14 5 Display of the impedance measured by the...

Page 203: ...or correction of phase errors caused by the input circuit one two or three phase measurement two phase only with delta connected v t s wide range of applications see Fig 3 5 15 2 and Fig 3 5 15 3 correction of c t and v t phase errors insensitive to DC components in voltage and current insensitive to harmonics in voltage and current C Inputs and outputs I C t v t inputs current voltage II Binary i...

Page 204: ... CT VT Addr 0 VoltageInp CT VT Addr 0 PN UN IN 1 000 0 500 2 500 0 001 BlockInp BinaryAddr F Trip SignalAddr ER Start SignalAddr Explanation of parameters ParSet 4 1 Parameter for determining in which set of parameters a par ticular function is active see Section 5 11 Trip channel of the tripping logic matrix activated by the func tion s tripping O P P Setting Power setting for tripping Forbidden ...

Page 205: ...han 100 Forbidden settings Reset ratios 100 for MAX and P Setting 0 Reset ratios 100 for MAX and P Setting 0 Reset ratios 100 for MIN and P Setting 0 Reset ratios 100 for MIN and P Setting 0 A large hysteresis must be selected for low pick up settings and a small one for high pick up settings see Fig 3 5 15 1 Forbidden settings for hysteresis 100 reset ratio settings 0 5 0 01 P Setting PN 10 P Set...

Page 206: ...ed 1 single phase 2 two phase i e for a three phase measurement with V connected v t s P URS IR cos j UST IT cos j A two phase power measurement is only possible when connected to delta connected v t s 3 three phase P UR IR cos j US IS cos j UT IT cos j The measurement is only correct with delta connected v t s if the three phase voltages are symmetrical CurrentInp defines the c t input channel Al...

Page 207: ...mpensated e g to the rated power factor of a generator BlockInp I P for blocking the function F not blocked T blocked xx all binary I P s or O P s of protection functions Trip Tripping signal Start Pick up signal HEST 935 022 C Reset ratio Setting 0 05 0 1 0 2 0 3 0 4 0 5 0 75 1 1 0 0 5 60 95 P PN Reset ratio Fig 3 5 15 1 Permissible reset ratio settings ...

Page 208: ...3 5 15 2 and Fig 3 5 15 3 The an gles given apply for connection according to the connections in Index 12 0 Q P Operates Restrains Max Min Drop Ratio Angle MAX 0 30 Active overpower settings 100 P Setting 0 Restrains 0 Q P Operates MIN 100 0 30 Active underpower settings 0 P Setting Max Min Drop Ratio Angle HEST 965 017 C Fig 3 5 15 2 Power function settings for different applications The values i...

Page 209: ...power settings P Setting Max Min Drop Ratio Angle 0 MAX 100 Directional power settings P Setting Max Min Drop Ratio Angle MIN 60 90 Restrains 0 Q P Operates 60 100 0 Fig 3 5 15 3 Power function settings for different applications The values in brackets apply for a single phase measurement with the v t connected phase to phase e g IR current and URS voltage or for a three phase measurement with del...

Page 210: ...ting for PN Setting the reference power PN P U I S U I N N N GN N N 3 1 1 S U I P S GN GN GN GN GN GN 3 cosj where SGN PGN UGN IGN cos jGN ratings of the protected unit UN1 IN1 primary v t and c t ratings PN UN IN protection ratings Example 1 Generator 96 MVA 13 8 kV 4 kA cosj 0 8 V t s c t s 14 4 3 100 3 5 5 kV V kA A Protection 100 V 5 A Reverse power 0 5 PGN Alternative 1 No modification of PN ...

Page 211: ...ected to the phase currents and a phase to neutral or phase to phase voltage The purpose of the phase compensation is twofold to compensate the phase difference between the phase volt age and the any measured phase to phase voltage to determine whether the function responds to active or re active power The following table summarises the most important operating modes to simplify setting the corres...

Page 212: ...cted v t s MaxMin P Setting max min 100 120 P Q 0 MAX MIN MAX MIN MAX MIN MAX MIN 100 100 100 max min max min max min HEST 965 019 C 0 30 30 120 P 0 0 0 0 0 Q Q 0 0 Q I R U RS I R U RS I R U RS I R U RS Function Drop Ratio Active power Inductive reactive power Capazitive reactive power P P Angle Reverse power 100 100 100 100 0 0 0 Fig 3 5 15 4 Settings different applications when measuring phase R...

Page 213: ...he reverse power function is used primarily to protect the prime mover It is necessary for the following kinds of prime mover steam turbines Francis and Kaplan hydro units gas turbines diesel motors Two reverse power functions are used for prime movers with ratings higher than 30 MW because of their importance and value The reverse power function has two stages The setting is half the slip power o...

Page 214: ...e speed regulator or system instability the second stage will not be able to trip because the function re peatedly picks up and resets before the time delay can expire It is for just such cases that the integrator Delay function is needed to ensure reliable tripping U I P Block Trip Integrator t 1 t 2 t 3 Trip Start Trip t1 fast stage interlocked with the main turbine steam valve t2 slow stage t3 ...

Page 215: ...ion to IR and UR 0 connection to IR and URS 30 connection to IR and UST 90 connection to IR and UTR 150 Phi Comp 0 0 Stage 1 Delay 0 5 s Stage 2 Delay 20 s or Integrator Delay function for delay on operation and reset Trip time 20 s Reset time 3 s Integration 1 Note The following must be set for a Minimum forward power scheme according to Anglo Saxon practice P Setting 0 MaxMin MIN Drop Ratio 150 ...

Page 216: ...ABB Switzerland Ltd REG 316 4 1MRB520049 Uen Rev F 3 178 ...

Page 217: ...American Standard Requirements for Cylindrical Rotor Synchronous Generators with extended setting range adjustable rate of counting backwards when the overload disappears cooling rate of thermal image insensitive to DC components insensitive to harmonics single or three phase measurement detection of highest phase in the three phase mode C Inputs and outputs I Analogue inputs current II Binary inp...

Page 218: ...IN 1 00 0 50 2 50 0 01 BlockInp BinaryAddr F Trip SignalAddr ER Start SignalAddr ER Explanation of parameters ParSet 4 1 Parameter for determining in which set of parameters a par ticular function is active see Section 5 11 Trip defines the tripping channel activated by the tripping output of the function tripping logic k1 Setting Multiplier Operating characteristic constant I Start Enabling curre...

Page 219: ...single or three phase measurement CurrentInp defines the analogue current input channel All current inputs may be selected In the case of three phase measurement the first channel of the group of three selected must be specified IB Setting Reference base current for compensating a difference in relation to IN BlockInp Binary address used as blocking input F Not blocked T Blocked xx all binary inpu...

Page 220: ...ABB Switzerland Ltd REG 316 4 1MRB520049 Uen Rev F 3 182 Fig 3 5 16 1 Operating characteristic of the stator overload function ...

Page 221: ...verload capability Providing compensation using the reference value of the A D channel has not been made the reference current IB for the protection is calculated from the generator load current IB1 which is usually the same as the generator rated current and the c t rated currents IN1 and IN2 as follows IB I I I B N2 N 1 1 The setting is the ratio IB IN where IN is the rated current of the protec...

Page 222: ...MRB520049 Uen Rev F 3 184 Example t 5 min or 300 s DJm 70 K DJn 60 K k1 300 70 60 60 50 s Typical settings IB Setting according to protected unit I Start 1 1 IB k1 Setting 41 4 s t min 10 0 s tg 120 0 s t max 300 0 s t Reset 120 0 s ...

Page 223: ... Requirements for Cylindrical Rotor Synchronous Generators with extended setting range adjustable rate of counting backwards when the overload disappears cooling rate of thermal image three phase measurement current measurement three phases of AC excitation supply evaluation of the sum of the three phases instantaneous values without digital filtering C Inputs and outputs I Analogue inputs current...

Page 224: ...50 2 50 0 01 BlockInp BinaryAddr F Trip SignalAddr ER Start SignalAddr ER Explanation of parameters ParSet 4 1 Parameter for determining in which set of parameters a par ticular function is active see Section 5 11 Trip defines the tripping channel activated by the tripping output of the function tripping logic k1 Setting Multiplier Operating characteristic constant I Start Enabling current for ope...

Page 225: ...ol CurrentInp defines the analogue current input channel All current inputs may be selected In the case of three phase measurement the first channel of the group of three selected must be specified IB Setting Reference base current for compensating a difference in relation to IN BlockInp Binary address used as blocking input F Not blocked T Blocked xx all binary inputs or outputs of a protection f...

Page 226: ...ABB Switzerland Ltd REG 316 4 1MRB520049 Uen Rev F 3 188 Fig 3 5 17 1 Operating characteristic of the rotor overload function ...

Page 227: ...o c t s in the AC excitation supply It may nor be used for brushless exci tation systems Providing compensation using the reference value of the A D channel has not been made the reference current IB for the protection is calculated from the AC load current IB1 of the exci tation supply which is usually the same as the full load excitation current and the c t rated currents IN1 and IN2 as follows ...

Page 228: ...ABB Switzerland Ltd REG 316 4 1MRB520049 Uen Rev F 3 190 Typical settings IB Setting according to protected unit I Start 1 1 IB k1 Setting 33 8 s t min 10 0 s tg 120 0 s t max 300 0 s t Reset 120 0 s ...

Page 229: ... shedding B Features measurement of one voltage frequency calculation based on the complex voltage vector insensitive to DC component insensitive to harmonics undervoltage blocking C Inputs and outputs I C t v t inputs voltage II Binary inputs blocking III Binary outputs undervoltage blocking start trip IV Measurements frequency voltage ...

Page 230: ...gnalAddr ER Start SignalAddr Explanation of parameters ParSet 4 1 Parameter for determining in which set of parameters a par ticular function is active see Section 5 11 Trip defines the tripping relay activated by the tripping output of the function matrix Frequency Operating value Setting restrictions underfrequency not fN overfrequency not fN BlockVoltage Peak value of the voltage for blocking r...

Page 231: ...age inputs may be selected Blocked U defines the output for signalling blocking by undervoltage signal address BlockingInp Binary address used as blocking input F not blocked T blocked xx all binary inputs or outputs of protection functions Trip Output for signalling tripping Start Output for signalling pick up ...

Page 232: ...on losses in the generator damage to the generator and the prime mover by vibration Some synchronous machines are subject to severe vibration if they are operated at speeds other than their rated speed Vibration occurs more usual at speeds below rated frequency but can occur both above and below A complete scheme often comprises therefore 4 stages two for alarm and tripping for overfrequency and t...

Page 233: ...t stage 2nd stage 3rd stage 4th stage 5th stage Alarm Load shed Alarm Load shed Load shed Frequency Hz 49 8 49 0 48 7 48 8 47 5 Delay s 0 5 0 0 0 0 0 0 0 0 BlockVoltage 0 6 0 6 0 6 0 6 0 6 MaxMin MIN MIN MIN MIN MIN Table 3 5 18 2 Typical settings for alarm and tripping stages ...

Page 234: ...ABB Switzerland Ltd REG 316 4 1MRB520049 Uen Rev F 3 196 ...

Page 235: ...es one phase voltage as input variable supervises the rate of change df dt of the frequency provision for enabling by absolute frequency insensitive to DC component insensitive to harmonics and other high frequency signals undervoltage blocking C Inputs and outputs I C t v t inputs voltage II Binary inputs blocking III Binary outputs blocked by undervoltage tripping IV Measurements rate of change ...

Page 236: ...60 00 0 01 VoltageInp CT VT Addr 0 Blocked U SignalAddr BlockInp BinaryAddr F Trip SignalAddr ER Explanation of parameters ParSet 4 1 Parameter for determining in which set of parameters a par ticular function is active see Section 5 11 Trip defines the tripping channel activated by the tripping O P of the function matrix tripping logic df dt Rate of change of frequency pick up setting Inadmissibl...

Page 237: ...gs Frequency fN Frequency fN 10 Hz Frequency fN 5 Hz BlockVoltage Pick up setting for undervoltage blocking reset ratio approx 1 05 reset time approx 0 1 s Delay Delay from the instant the function picks up to the generation of a tripping command VoltageInp defines the voltage input channel All voltage inputs may be selected with the exception of the special voltage inputs for the 100 ground stato...

Page 238: ...Voltage Delay Delay The rate of change of frequency function only trips when the rate of change is higher than setting the absolute frequency criterion picks up and the voltage is not lower than the under voltage setting The additional absolute frequency criterion prevents unwanted operation of the rate of change function during power system transients Where it is desired that the rate of change f...

Page 239: ...es evaluation of the voltage frequency ratio single phase measurement definite time delay determination of frequency from the complex voltage vector insensitive to DC components insensitive to harmonics over or underexcitation mode C Inputs and outputs I C t v t inputs voltage II Binary inputs blocking III Binary outputs pick up tripping IV Measurements voltage frequency frequency ...

Page 240: ...R Start SignalAddr Explanation of parameters ParSet 4 1 Parameter for determining in which set of parameters a par ticular function is active see Section 5 11 Trip defines the tripping channel activated by the tripping output of the function tripping logic Delay time delay between pick up and tripping VoltageInp defines the v t input channel All voltage inputs may be selected V f Setting Setting o...

Page 241: ...v F ABB Switzerland Ltd 3 203 BlockInp Binary address used as blocking input F Not blocked T Blocked xx all binary inputs or outputs of a protection function Trip Output for signalling tripping Start Output for signalling pick up ...

Page 242: ...id false operation during system transients such as load shedding The magnetic flux is not measured directly Instead the volt age frequency ratio which is proportional to the flux and easier to measure is monitored Overfluxing can result from either an increase of system voltage or a reduction of system frequency For example 10 overfluxing at constant frequency is equivalent to increasing the valu...

Page 243: ...nt inverse time delay according to U f ratio determination of frequency from the complex voltage vector insensitive to DC components insensitive to harmonics delay determined by integrating function response input of delay table facilitates matching the operating charac teristic to a specific machine according to IEEE Guideline C 37 91 1985 adjustable rate of counting backwards when the overfluxin...

Page 244: ... 0 01 t V f 1 20 min 01 00 0 01 100 0 01 t V f 1 25 min 00 480 0 01 30 0 001 t V f 1 30 min 00 300 0 01 30 0 001 t V f 1 35 min 00 220 0 01 30 0 001 t V f 1 40 min 00 170 0 01 30 0 001 t V f 1 45 min 00 140 0 01 30 0 001 t V f 1 50 min 00 140 0 01 30 0 001 t Reset min 60 0 0 02 100 0 1 BlockInp BinaryAddr F Trip SignalAddr ER Start SignalAddr Explanation of parameters ParSet 4 1 Parameter for dete...

Page 245: ...eristic constant t max Maximum operating time after being enabled regardless of inverse characteristic Operating characteristic constant t V f 1 05 t V f 1 50 Table of 10 values data input for defining a specific inverse operating characteristic t Reset Time taken to reset from the operating point This corre sponds to the time taken by the generator to cool BlockInp Binary address used as blocking...

Page 246: ...of system voltage or a reduction of system frequency For example 10 overfluxing at constant frequency is equiva lent to increasing the value of the V f ratio to 1 1 VB fN The limit curve for the maximum magnetic flux V f permissible for electrical machines is defined in standards data supplied by manufacturers Providing compensation using the reference value of the A D channel has not been made th...

Page 247: ...ing Approximation according to table Permissible short time overfluxing Fig 3 5 21 1 Example of an overfluxing curve 100 110 120 130 140 Applications for Power Transformers IEEE C37 91 1985 0 01 1 0 10 100 1000 Minutes HEST 935 025 C 90 150 0 1 Data on overfluxing limits must be requested from the various suppliers 1 2 3 V O L T H z S Fig 3 5 21 2 Transformer overfluxing limits of three manufac tu...

Page 248: ...0 Typical settings V f Setting 1 1 VB fN VB Setting according to protected unit t min 0 2 min t max 60 min t V f 1 05 1 50 according to protected unit1 t Reset according to protected unit 1 Refer to Fig 3 5 21 1 for typical settings for a Westinghouse unit ...

Page 249: ...ltage balance per phase in the three phase mode with selection by OR gate for tripping adjustable delays for operation and reset insensitive to DC components insensitive to harmonics C Inputs and outputs I Analogue inputs voltage 2 sets of 1 or 3 inputs II Binary inputs blocking III Binary outputs pick up tripping line 1 trip voltage input U1 line 2 trip voltage input U2 IV Measurements Single pha...

Page 250: ...ne1 SignalAddr Trip Line2 SignalAddr Explanation of parameters ParSet 4 1 Parameter for determining in which set of parameters a par ticular function is active see Section 5 11 Trip defines the tripping channel activated by the tripping output of the function tripping logic V Unbalance Voltage difference setting for tripping Difference between the amplitudes of the two voltage input channels which...

Page 251: ...annel R phase of the group of three selected must be specified BlockInp Binary address used as blocking input F Not blocked T Blocked xx all binary inputs or outputs of a protection function Trip Output for signalling tripping Start Output for signalling pick up Trip Line1 Same as Trip but only if the amplitude of the voltage at input U1 is less than that at input U2 determination of the voltage d...

Page 252: ...ine 2 Operates Line 1 U U 1 2 U1R R phase voltage amplitude of voltage channel 1 line 1 U2R R phase voltage amplitude of voltage channel 2 line 2 Three phase mode The characteristic applies accordingly to S and T phases Fig 3 5 22 1 Operating characteristic of the balanced voltage function show for R phase and the setting V Unbalance 0 2 UN ...

Page 253: ...value V Unbalance A tripping signal is emitted for the source with the lower voltage Trip Line1 or Trip Line2 and a general tripping signal Trip generated after a set time delay Delay providing the tripping condition remains fulfilled throughout the delay time These signals are available for blocking protection and instrumentation connected to the faulty source and thus prevent false tripping or m...

Page 254: ...setting can be increased or the balanced voltage function can be blocked by a frequency function Differing primary rated voltages of the v t s can be com pensated by appropriately setting the reference values of the corresponding A D channels The adjusted reference values then apply for all the protection functions connected to the same channels Application example Voltage input 1 R S T V t 1 Line...

Page 255: ...v t 1 the protection function detects an unbalance and after the set delay time generates the tripping signals Trip and Trip Line1 These then initiate blocking of the metering and protection de vices such as underimpedance voltage controlled overcurrent and distance protections etc connected to v t 1 Typical settings Max voltage difference V Unbalance 0 20 UN Delay 0 04 s Reset time t Reset 0 50 s...

Page 256: ...ABB Switzerland Ltd REG 316 4 1MRB520049 Uen Rev F 3 218 ...

Page 257: ...alarm and tripping stages adjustable initial temperature DC component filter harmonic filter single or three phase current measurement maximum value detection for three phase measurement temperature rise calculated 40 times for each thermal time constant setting C Inputs and outputs I C t v t inputs Current II Binary inputs Blocking III Binary outputs Alarm Tripping IV Measurements Temperature ris...

Page 258: ...eters ParSet 4 1 Parameter for determining in which set of parameters a par ticular function is active see Section 5 11 Trip Tripping logic matrix for this function Theta Begin Initial temperature rise This temperature rise is set every time the function is initiated e g when the protection is switched on or settings are changed Theta Warn Temperature rise at which alarm is given Theta Trip Temper...

Page 259: ...cted unit referred to the rated current of the protection BlockInp I P for blocking the function F not blocked T blocked xx all binary I P s or O P s of protection functions Warning Alarm signal Trip Tripping signal TimeConstant Thermal time constant for calculating the temperature rise Settings 2 minutes are not permitted ...

Page 260: ...ge of the temperature rise A current change causes the temperature of the protected unit to rise from an initial value to a final value according to one or several exponential functions The various influences on the temperature rise are the thermal response of for example in the case of a power transformer the cooling water the oil the windings etc One exponential function such as that of the tran...

Page 261: ...g time is ø ö ç ç ç ç ç è æ ø ö ç ç è æ J ø ö ç ç è æ J t 2 B 2 B 0 I I 100 I I 100 ln t where J0 initial temperature rise J pick up temperature rise t thermal time constant The variables in the submenu DISPLAY OPERATING VALUES are the calculated temperature rise the power dissipation and the current The first two are mean values over the period of calculation t 40 The values shown in the event li...

Page 262: ...eta Warn 105 Theta Trip 110 Transformers have two distinct exponential functions one for the oil and one for the winding The corresponding mean values are Oil DJoil 50 K toil 120 min Winding DJW DJoil 10 K tW 10 min The total temperature rise of the winding is thus DJW 60 K Since however the model operates with just a single exponential function its temperature rise has to follow the best possible...

Page 263: ... 905 035 C 0 t 1 0 1 5 i i in t min 60 80 20 40 60 20 40 120 140 0 100 120 80 100 140 160 Jnw JOil JOil Jw tOil tw DJOil Jw JOil J C Jw t JÖl t DJOil 50 C t 120 min Oil Jnw 100 C JOil 90 C DJnw 60 C tw 10 min Fig 3 5 23 1 Temperature rise of a transformer winding ...

Page 264: ...e temperature Overload Temperature rise at rated current Thermal time constant setting J 126 4 C t D J J C t 90 min DJ 50 C n oil t 120 min oil n oil DJ DJ 10 C nw t 10 min w Fig 3 5 23 2 Actual temperature rise of the winding compared to the temperature rise of the thermal image Typical settings IB Setting to be calculated Theta Beginn 100 Theta Warn 105 Theta Trip 110 ...

Page 265: ...of protection Stator ground faults producing a current at the star point 5 A cause the P8 contactor to reset which separates the injection unit Type REX 010 from the injection transformer block REX 011 and interrupts injection in both stator and rotor circuits The 95 stator ground fault protection then clears the fault on its own B Features protects the star point and a part of the stator winding ...

Page 266: ...A value of 29 9 kW or 30 kW is displayed when there is no ground fault A whole number fault code between 100 and 111 is displayed in cases when it is not possible to compute the ground fault resistance 100 0 means no injection for more than 5 s 101 0 means incorrect frequency Either the injection fre quency on the REX 010 or the rated frequency on the REG 316 4 is incorrectly set 102 0 means exter...

Page 267: ... the HMC is displayed Normal operation Neither of the two inputs AdjMTRInp and AdjREsInp is enabled and injection is taking place Note Only one of the binary inputs may be enabled at any one time otherwise an error code is generated for the measurements Rfs MTR and REs see table below AdjMTRInp AdjREsInp 0 0 Protection active and Rfs is computed 1 0 Determination of MTR and Rfs 0 1 Determination o...

Page 268: ... 10 0 8 000 12 00 0 01 MTransRatio 100 0 10 0 200 0 0 1 NrOfStarpt 1 1 2 1 VoltageInpUi CT VT Addr 0 VoltageInpUs CT VT Addr 0 2 StarptInp BinaryAddr F AdjMTRInp BinaryAddr F AdjREsInp BinaryAddr F BlockInp BinaryAddr F Trip SignalAddr ER StartTrip SignalAddr Alarm SignalAddr ER StartAlarm SignalAddr InterruptInt SignalAddr InterruptExt SignalAddr 2 Starpt SignalAddr MTR Adjust SignalAddr REs Adju...

Page 269: ...ault resistance setting for tripping REs Grounding resistor REs for primary system grounding Where the grounding resistor is connected to the secondary of a v t its value related to the primary system R Es has to be calculated and entered REs 2 Starpt The total grounding resistance of a 2nd star point in the zone of protection RFs Adjust Simulated ground fault resistance used as a reference value ...

Page 270: ...o the REs determination mode F FALSE T TRUE binary input or output of a protec tion function BlockInp Binary address used as blocking input F FALSE T TRUE binary input or output of a protec tion function Trip Output for signalling tripping signal address StartTrip Output for signalling the pick up of the tripping stage signal address Alarm Output for signalling an alarm signal address StartAlarm O...

Page 271: ...star point in parallel signal address MTR Adjust Output for signalling the binary status of AdjMTRInp signal address REs Adjust Output for signalling the binary status of AdjREsInp signal address Extern Block Output for signalling that the function is disabled by an exter nal signal signal address ...

Page 272: ...of the Rfs calculation depends on the values en tered for REs and MTR Therefore check the settings and correct them if necessary by connecting resistors between 100 W and 10 kW between the star point and ground while the generator is not running The protection function provides a convenient way of setting these two parameters in the software by switching its mode us ing the input AdjMTRInp or AdjR...

Page 273: ...u Edit function parameters Enter the value for the setting RFs Adjust Enter the approximate value for REs If the grounding resistor is on the secondary system side the value entered must be referred to the primary side Refer also to the Sections concerning REs and MTR in the case of secondary injection at the star point respectively at the terminals Save the settings entered Open the menu Display ...

Page 274: ...allel resistor RPs The current at the star point must not exceed 20 A It is recommended however to select the resistors such that the star point current is 5 A to protect as much of the winding as possible The total resistance is thus Condition 1 R R U 3 I Es Ps Gen Emax where UGen phase to phase voltage at the generator terminals IEmax max star point current 20 A The following conditions must als...

Page 275: ... R 800 Es W Determination of the v t Assumed N N 8 kV 3 100 V 12 11 46188 Condition 5 is fulfilled because 1 2 n N N 0 8 n 46 7 31 1 12 11 where 38 9 Ω 150 Ω 800 Ω 800 V 100 3 kV 8 n The following values are permissible R 150 Ps W R 800 Es W N N 8 kV 3 100 V 12 11 Design instructions When supplied from a 110 V battery the maximum power in jected into the stator circuit is 110 VA The injection unit...

Page 276: ...0 W Both RPs and REs must be able to conduct the maximum star point current for 10 s The resistor RPs must also be continuously rated for the injection voltage injected power 100 VA The maximum generator star point current is determined by the resistors REs and RPs Using the above resistors this current would be for example 5 3 A for UGen 10 5 kV or 13 5 A for UGen 27 kV ...

Page 277: ...star point current 20 A N1 N2 ratio of the grounding transformer The following conditions must also be fulfilled Condition 2 R 130 N N Ps 2 1 2 æ è ç ö ø W and R 500 N N Ps 2 1 2 æ è ç ö ø W Condition 3 R 4 5 R Es Ps Condition 4 R 0 7 k N N Es 2 1 2 æ è ç ö ø W and R 5 0 k N N Es 2 1 2 æ è ç ö ø W The v t must be designed such that for a solid ground fault at the generator terminals the rated freq...

Page 278: ...REs and MTR i e they present the secondary circuit reflected on the primary system side Inaccuracies due to contact resistance grounding resistor tolerances etc are thus automatically compensated Determining the values for REs and MTR by means of the de termination modes REs Adjust and MTR Adjust during com missioning is recommended in preference to calculating their values As a check calculate th...

Page 279: ... 2 æ è ç ö ø W W Assumed R 42 m Ps W Condition 3 R 4 5 42 m 189 m Es W W Condition 4 R 700 1 60 194 m Es 2 æ è ç ö ø W W In order to fulfil Conditions 1 3 and 4 R 400 m Es W Determination of the v t Assumed N N 18 kV 3 100 V 1 60 173 2 V 100 V 3 12 11 Condition 5 is fulfilled because 1 2 n N N 0 8 n 1 88 1 732 1 254 12 11 where n 18 kV 3 100 V 1 60 400 m 400 m 42 m 1 567 W W W The following values...

Page 280: ... the grounding resistor connected to the second star point Note The stator ground fault protection scheme sees the ground ing resistor of the second star point as a ground fault with the value REs 2 Starpt Assuming a ground fault of resistance Rfs occurs the total resistance of the parallel resistors Rfs and REs 2 Starpt is calculated first The value of Rfs can be simply determined from this provi...

Page 281: ...max max star point current 20 A N1 N2 ratio of the grounding transformer The grounding resistors R Es and R Ps must fulfil the following conditions Condition 2 R 130 3 N N Ps 2 1 2 æ è ç ö ø W and R 500 3 N N Ps 2 1 2 æ è ç ö ø W Condition 3 R 4 5 R Es Ps Condition 4 R 0 7 k 3 N N Es 2 1 2 æ è ç ö ø W and R 5 0 k 3 N N Es 2 1 2 æ è ç ö ø W The v t must be designed such that for a solid ground faul...

Page 282: ...on to the corre sponding injection voltage Uis can be seen from the following table The maximum possible injection voltage should be chosen in each case R Ps W Uis V 0 45 6 4 1 8 12 8 7 2 25 6 Table REX011 2 Design example U 12 kV Gen N N 12 kV 3 600 V 3 1 2 Assumed I 5 A Emax Determination of the grounding resistors Condition 1 R R 12 kV 3 5 A 3 600 V 3 12 kV 3 3 3 5 A 12 kV 1 4 Es Ps 2 2 æ è ç ç...

Page 283: ... N N 12 kV 3 100 V 3 600 V 3 12 kV 3 3 600 V 100 V 6 12 11 0 Condition 5 is fulfilled because 1 2 n N N 0 8 n 6 6 6 4 12 11 0 4 where n 12 kV 3 100 V 3 600 V 3 12 kV 3 10 10 1 0 91 5 W W W 6 5 The following values are permissible R 1 Ps W R 10 Es W N N 3 600 V 100 V 12 11 Calculation of the settings REs and MTR R 10 12 kV 3 3 600 V 3 1 33 k Es 2 æ è ç ç ç ç ö ø W W MTR N N 110 V 6 V 103 12 11 4 1 ...

Page 284: ...ABB Switzerland Ltd REG 316 4 1MRB520049 Uen Rev F 3 246 REs RPs Uis Generator Us N12 N11 R S T Injection voltage Voltage transformer Fig 3 5 24 1 Stator ground fault protection with primary injection ...

Page 285: ...ion voltage transformer Fig 3 5 24 2 Stator ground fault protection with secondary injection at the generator star point R Es R Ps Uis Generator Us N 12 N 11 R S T N1 N2 Grounding transformator Voltage Injection voltage transformer Fig 3 5 24 3 Wiring diagram for secondary injection of the stator grounding transformer at the generator terminals ...

Page 286: ...MRB520049 Uen Rev F 3 248 REs RPs Uis Generator Us N12 N11 R S T Injection voltage S1 REs 2 Starpt Switch position to binary input Voltage transformer Fig 3 5 24 4 Stator ground fault protection for installations with two star points ...

Page 287: ...the rotor computes the resistance of the ground fault monitors the amplitude and frequency of the injection signal monitors the measuring circuit with respect to open circuit and correct connection of the grounding resistor C Inputs and outputs I C t v t inputs voltage 2 inputs II Binary inputs blocking coupling capacitor adjustment REr adjustment III Binary outputs alarm stage pick up alarm trip ...

Page 288: ...en circuit 109 0 means that both the binary inputs AdjRErInp and AdjCoupCInp are enabled 111 0 means that the binary input AdjRErInp is enabled No other codes will normally be generated but if they are they are a diagnostic aid for the service people Ck When the input AdjCoupCInp is enabled 133 00 is dis played initially until the coupling capacitor has been com puted This can take a maximum of 10...

Page 289: ...Note Only one of the binary inputs may be enabled at any one time otherwise an error code is generated for the measurements Rf C and REr see table below AdjCoupCInp AdjRErInp 0 0 Protection active and Rf is computed 1 0 Determination of C and Rf 0 1 Determination of REr Rf 111 0 1 1 Error codes 109 00 and 109 00 Rf 109 0 0 binary input disabled 1 binary input enabled ...

Page 290: ...elect RFr Adjust kW 10 0 8 000 12 00 0 01 CouplingCap µF 4 00 2 00 10 00 0 01 VoltageInpUi CT VT Addr 0 VoltageInpUr CT VT Addr 0 AdjRErInp BinaryAddr F AdjCoupCInp BinaryAddr F BlockInp BinaryAddr F Trip SignalAddr ER StartTrip SignalAddr Alarm SignalAddr ER StartAlarm SignalAddr InterruptInt SignalAddr InterruptExt SignalAddr REr Adjust SignalAddr CoupC Adjust SignalAddr Extern Block SignalAddr ...

Page 291: ... be higher than RFr for tripping RFr TripVal Ground fault resistance setting for tripping REr Grounding resistor REr Uir The normal rotor injection voltage is 50 V Provision is also made for an injection voltage of 20 or 30 V by appropriately changing the wiring on the injection transformer unit Type REX 011 RFr Adjust Simulated ground fault resistance used as a reference value for calculating REr...

Page 292: ...or signalling tripping StartTrip Output for signalling the pick up of the tripping stage Alarm Output for signalling alarm StartAlarm Output for signalling the pick up of the alarm stage InterruptInt Output for signalling an open circuit injection circuit InterruptExt Output for signalling an open circuit measuring circuit Output for signalling an open circuit injection circuit Both pick up and re...

Page 293: ...ge RFr Setting 500 W Delay 1 s Setting procedure How accurately Rfr is measured depends on the values entered for REr and C Therefore check the settings and correct them if necessary by connecting resistors between 100 W and 10 kW between the rotor and ground while the generator is not running The protection function provides a convenient way of setting these two parameters in the software by swit...

Page 294: ...tor winding Rf 0 W Enter and save the value the nominal value of C in the sub menu Present prot funcs Open the menu Display function measurements and note the value of Ck Enter and save the value noted for the set ting of CouplingCapC in the window Present prot funcs Remove the simulated ground fault from the rotor Remove the logical 1 from the binary input AdjCoupCInp Design instructions The grou...

Page 295: ...49 Uen Rev F ABB Switzerland Ltd 3 257 Application examples R P W pr 200 15 W R k Er 1 W C F kV 2 2 8 m t 4 ms REr RPr Uir Ur Injection voltage Rotor C1 C2 C C1 C2 Fig 3 5 25 1 Injection at one pole of the rotor winding ...

Page 296: ...ABB Switzerland Ltd REG 316 4 1MRB520049 Uen Rev F 3 258 REr RPr Uir Ur Injection voltage Rotor C1 C2 C C1 C2 Fig 3 5 25 2 Injection at both poles of the rotor winding ...

Page 297: ... discriminates an internal and an external power swing centre trips after a set number of slips trips within a set rotor angle C Inputs and outputs I Analogue inputs current voltage II Binary inputs blocking of the entire function blocking operation in generating direction to left blocking operation in motoring direction to right external enable for zone1 III Binary outputs alarm before the first ...

Page 298: ...180 1 TripAngle deg 090 0 180 1 n1 1 0 20 1 n2 1 0 20 1 t Reset s 5 000 0 500 25 000 0 010 CurrentInp AnalogAddr 0 VoltageInp AnalogAddr 0 BlockGen BinaryAddr F BlockMot BinaryAddr F BlockInp BinaryAddr F EnableZone1 BinaryAddr F Warning SignalAddr ER Generator SignalAddr ER Motor SignalAddr ER Zone1 SignalAddr ER Zone2 SignalAddr ER Trip1 SignalAddr ER Trip2 SignalAddr ER Explanation of parameter...

Page 299: ... direction 60 90 c t neutral on the line side 240 270 c t neutral on the generator side WarnAngle Rotor angle above which alarm of potential slipping is given rotor angle WarnAngle TripAngle Rotor angle below which first Trip1 and the Trip2 are is sued rotor angle TripAngle 1 The impedance unit 1 000 UN IN represents an impedance of 100 Thus if the imped ance setting in percent is known it can be ...

Page 300: ...em BlockMot Blocking input for detecting pole slip to the right i e the gen erator is slower than the power system The power system drives the generator as if it were a motor BlockInp Blocking input for the entire pole slipping function EnableZone1 Zone 1 is enabled for slipping in zone 2 as well i e independently of ZC Warning Detection of variations of rotor angle before the first slip oc curs G...

Page 301: ...between ZC and ZA Trip1 Tripping and signalling when the counter for zone 1 reaches the value n1 Trip2 Signalling when the counter for zone 2 reaches the value n2 If Trip2 is to control tripping the signal Trip2 has to be assigned to a tripping relay see also Section 5 5 4 2 ...

Page 302: ...d when the minimum current exceeds 0 10 IN the maximum voltage falls below 0 92 UN the voltage U cos j has an angular velocity of 0 2 8 Hz and the corresponding direction is not blocked An alarm is given when movement of the rotor in relation to the slip line and the rotor angle exceeds the angle set for WarnAngle Slipping is detected when a change of rotor angle is detected the slip line is cross...

Page 303: ...crossed in the opposite direction outside ZA ZB A further slip in the opposite direction within ZA ZB resets all the signals and is then signalled itself as a first slip The Trip1 tripping command and signal are generated after n1 slips in zone 1 providing the rotor angle is less than TripAngle The Trip2 signal is generated after n2 slips in zone 2 providing the rotor angle is less than TripAngle ...

Page 304: ...3 5 26 1 Locus of the impedance measured at the gen erator terminals during pole slipping in relation to the power system A Xd transient reactance of the generator XT short circuit reactance of the step up transformer ZS transient impedance of the power system A ...

Page 305: ...neutral on the generator side Setting ZA ZA is the impedance of the slip line and marks the limit of zone 2 It is also used for measuring phase angle see WarnAngle and TripAngle ZA should be set to the impedance between the location of the protection and the off load voltage of the equivalent circuit for the entire power system Setting ZB ZB is the impedance of the slip line in the reverse directi...

Page 306: ...n be set between 0 and 180 and determines the rotor angle above which alarm of imminent slip ping is given With the WarnAngle 0 alarm is given immediately the rotor angle changes providing it lies within the pick up range WarnAngle enables the operating status of the generator to be corrected because its rotor angle setting is reached before the first slip The machine can normally be stabilised fo...

Page 307: ...REG 316 4 1MRB520049 Uen Rev F ABB Switzerland Ltd 3 269 Fig 3 5 26 3 Example of the operation for n1 1 WarnAngle 53 and TripAngle 96 ...

Page 308: ...ipping takes place and the signals are generated The setting at which tripping should take place is determined according to an operating point that occurs shortly after the last permissible slip is favourable for the circuit breaker least stress due to reignition Typical setting TripAngle 90 Settings n1 n2 t Reset The number of slips n1 or n2 that may be considered permissible depends on the gener...

Page 309: ...om an external source or inter nally derived B Features Tripping characteristic according to British Standard 142 see Fig 3 5 27 1 c 0 02 normal inverse c 1 very inverse and long time earth fault c 2 extremely inverse DC component filter harmonic filter external 3 I0 signal or 3 I0 internally derived from the three phase currents wider setting range than specified in BS 142 C Inputs and outputs I ...

Page 310: ...1 BlockInp BinaryAddr F Trip SignalAddr ER Start SignalAddr ER Explanation of parameters ParSet 4 1 Parameter for determining in which set of parameters a par ticular function is active see Section 5 11 Trip Tripping logic matrix c Setting Setting for the exponential factor determining the shape of the operating characteristic according to BS 142 or for se lecting the RXIDG characteristic k1 Setti...

Page 311: ...c t input channel All the current channels are available for selection In the case of a three phase measurement the first channel R phase of the group of three must be selected IB Setting Reference current to take account of discrepancies with re spect to IN BlockingInp I P for the external blocking signal F unused T function always blocked xx all binary I P s or O P s of protection functions Trip...

Page 312: ...e shape of the IDMT characteristic is determined by the con stant c The standard IDMT characteristics according to BS 142 are normal inverse c 0 02 very inverse and long time earth fault c 1 00 extremely inverse c 2 00 Fig 3 5 27 1 IDMT tripping characteristic for I0 Invers I 3 I0 c Setting can also be set to RXIDG in which case the func tion s inverse characteristic corresponds to that of the rel...

Page 313: ... 3 1 0 Assuming the grading time of the protection functions to be 0 5 s at 6 x IB the settings of k1 according to the formula k1 5 t for operating times between 0 5 and 2 5 s become t s k1 s 0 5 2 5 1 5 1 5 7 5 2 10 2 5 12 5 The characteristics according to BS 142 are set as follows normal inverse k1 0 14 s very inverse k1 13 5 s extremely inverse k1 80 s long time earth fault k1 120 s Definite m...

Page 314: ...hat when MeasFwd does not pick up the IDMT function cannot trip when the reference voltage of the E F function is too low If tripping is required for this case the directional E F signal MeasBwd must be applied to the blocking input Applications with single phase reclosure In schemes involving single phase reclosure the I0 Invers function has to be blocked for the time that one pole of a circuit b...

Page 315: ...onent insensitive to harmonics single or three phase operation blocking two independent timers t1 t2 transfer tripping provision for disabling features RED BFP EFP UT unique ID for each binary input and output C Inputs and outputs I C t v t inputs current II Binary inputs 13205 Block BFP 13710 Start L1 13720 Start L2 13730 Start L3 13740 Start L1L2L3 13705 External start 13770 CB Off 13775 CB On 1...

Page 316: ... Trip t2 23340 Remote trip 23345 Red Trip L1 23350 Red Trip L2 23355 Red Trip L3 23375 EFP Rem trip 23370 EFP Bus trip 23330 Repeat trip after t1 23360 Unconditional trip after t1 23380 External trip after t1 23335 Backup trip after t2 23365 Unconditional trip after t2 IV Measurements Current amplitude L1 Current amplitude L2 Current amplitude L3 ...

Page 317: ...0000000 EFP REM TRIP B00000000 EFP BUS TRIP B00000000 General parameters ParSet4 1 P1 Select I Setting IN 1 20 0 20 5 00 0 01 Delay t1 s 0 15 0 02 60 00 0 01 Delay t2 s 0 15 0 02 60 00 0 01 Delay tEFP s 0 04 0 02 60 00 0 01 t Drop Retrip s 0 05 0 02 60 00 0 01 t Drop BuTrip s 0 05 0 02 60 00 0 01 t Puls RemTrip s 0 05 0 02 60 00 0 01 t1 active on Select t2 active on Select RemTrip active on Select...

Page 318: ...r ER Trip t1 L3 SignalAddr ER Trip t2 SignalAddr ER Remote Trip SignalAddr ER Red Trip L1 SignalAddr ER Red Trip L2 SignalAddr ER Red Trip L3 SignalAddr ER EFP Rem Trip SignalAddr ER EFP Bus Trip SignalAddr ER Retrip t1 SignalAddr ER Uncon Trip t1 SignalAddr ER Ext Trip t1 SignalAddr ER Backup Trip t2 SignalAddr ER Uncon Trip t2 SignalAddr ER Explanation of parameters TRIP t1 defines the tripping ...

Page 319: ...defines the tripping channel activated by the function s trip ping outputs RED TRIP L1 L2 or L3 matrix tripping logic EFP REM TRIP defines the tripping channel activated by the function s trip ping output EFP REM TRIP matrix tripping logic EFP BUS TRIP defines the tripping channel activated by the function s trip ping output EFP BUS TRIP matrix tripping logic ParSet 4 1 Parameter for determining i...

Page 320: ...abled on End fault protection enabled off End fault protection disabled Red active defines whether the redundant logic is enabled or disabled on Redundant tripping logic enabled off Redundant tripping logic disabled Start Ext active defines whether the unconditional tripping logic is enabled or disabled on Unconditional tripping logic enabled off Unconditional tripping logic disabled RemTrip after...

Page 321: ... phases F disabled T enabled xx all binary inputs or outputs of protection functions External Start starts the unconditional trip F disabled T enabled xx all binary inputs or outputs of protection functions CB Off signals that the circuit breaker is fully open and also used to start the end zone fault protection F CB not fully open T CB fully open xx all binary inputs or outputs of protection func...

Page 322: ...gics Repeat trip see Retrip t1 External trip see Ext Trip t1 Unconditional trip see UnconTrip t1 Trip t1 L1 L2 or L3 signals a repeat trip of phase L1 L2 or L3 Trip t2 signals a backup trip This signal is activated by the following logics Backup trip after t2 see Backup Trip t2 Unconditional trip after t2 see UnconTrip t2 Remote Trip signals a transfer trip Red Trip L1 L2 or L3 signals a redundant...

Page 323: ...l trip after t1 This signal is generated when the UT timer t1 has timed out Ext Trip t1 signals an external trip This signal is generated when either the input Ext Trip t2 or Ext Trip EFP is enabled Backup Trip t2 signals a backup trip after t2 This signal is generated when the BFP timer t2 has timed out Uncon Trip t2 signals an unconditional trip after t2 This signal is generated when the UT time...

Page 324: ...g I Setting If the BFP current detector pick up setting is too low there is a possibility that the detectors may reset too late after it has suc cessfully tripped the circuit breaker This can be caused by damped oscillations on the secondary side of the c t On the other hand if the setting is too high the BFP may fail to operate at all should for example the current fall below pick up again due to...

Page 325: ...lt has occurred and been detected by a protective de vice 2 A tripping command is transmitted to the circuit breaker after the unit protection operating time which also starts the BFP The tripping command can be either single Start Lx or three phase Start L1L2L3 The redundant signals are also activated at the same time 3 The circuit breaker ruptures the fault current 4 After the reset delay tReset...

Page 326: ... 3 The circuit breaker ruptures the fault current 4 If after the reset delay tReset plus a safety margin tMargin the CB auxiliary contact CB On still signals to the UT that the CB is closed a second attempt is made by the UT function to trip the circuit breaker 5 The second attempt to trip the circuit breaker is successful and the fault current is interrupted 6 If after a further reset delay tRese...

Page 327: ...of the function which is used to start the EFP 3 The circuit breaker ruptures the fault current 4 After a reset delay plus a safety margin the current unit ei ther detects that the fault current has been interrupted and the EFP function resets or the fault current continues to flow and an EFP signal is issued Reset Off CB open CB t t t tEFP tMargin tCB open CB opening time including arc extinction...

Page 328: ...ing 0 4 IN Safety margin tMargin A safety margin of 20 ms is recommended Reset times t Drop Retrip and t Drop BuTrip The function includes two independently adjustable signal reset delays t Drop Retrip determines the reset delay for the following sig nals 23305 Trip t1 23315 Trip t1 L1 23320 Trip t1 L2 23325 Trip t1 L3 23345 Red Trip L1 23350 Red Trip L2 23355 Red Trip L3 23330 Retrip t1 23360 Unc...

Page 329: ... the timer t2 When it is disabled none of the backup trip group of signals is generated RemTrip active This setting provides facility for disabling transfer tripping When it is disabled none of the remote trip group of signals is gener ated EFP active This setting provides facility for disabling the end fault protection When it is disabled none of the end fault group of signals is generated Red ac...

Page 330: ...ABB Switzerland Ltd REG 316 4 1MRB520049 Uen Rev F 3 292 ...

Page 331: ...om the local mimic processes them in relation to the bay control logic configuration and then executes them The interlocks included in the control function device prevent in admissible switching operations which could cause damage to plant or endanger personnel B Features The control function depends on the particular application for which it is specifically created using CAP 316 It includes essen...

Page 332: ...inputs and sampled values II Analogue outputs Measured variable outputs III Binary inputs Blocking input binary input for blocking FUPLA Binary inputs from the IBB the system and protection functions IV Binary outputs Binary outputs to the IBB the system protection functions and for event processing V Measurements Measured variable outputs ...

Page 333: ...º DIRECTORY º Û Û Ed 13 RETURN ÈÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍ Û Û Ed 14 Û Û Li 15 À Ù Û Û Sa 16 VDEW6 Û Û Lo 17 Defluttering Û ÛÀ RE 18 Delay Û Û 19 Count Û Û À 20 Logic Û Û 21 UIfPQ Û Û 22 DisturbanceRec Û Û 23 NoFunction Û Û RE RETURN Û Û Û Û À À Ù Û ÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛ ÛOn line 9600 bps SCS SPAÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛV6 2b ...

Page 334: ...arameters ParSet 4 1 Parameter for determining in which set of parameters a par ticular function is active see Section 5 11 RepetitRate Determines the number of FUPLA runs per cycle high four FUPLA runs per cycle medium two FUPLA runs per cycle low one FUPLA run per cycle Cycl time Determines the interval between FUPLA starts Blocking F FALSE T TRUE system binary input protection function binary o...

Page 335: ...utput measured variable Observe the factors ms TON 10 ms TONS 1 s TONL Input from the IBB Observe the factors ms TON 10 ms TONS 1 s TONL 3 6 1 1 3 Binary inputs Binary inputs can be connected to the following sources Always ON 1 Always OFF 0 Binary system inputs Protection function binary outputs Inputs from the IBB 768 inputs in 24 groups of 32 signals each 3 6 1 1 4 Binary signals Binary signals...

Page 336: ...e IBB integer range C t v t input channels 3 6 1 1 6 Measurement outputs Measurement outputs can be connected to the following sinks Measurements Nos 1 64 3 6 1 1 7 Flow chart for measurement inputs and outputs IBB FUPLA 1 64 V 1 V 64 O 1 O 64 Measurement outputs Measurement inputs SCS output SCS input CHAN 4 function No IBB CHAN 9 Fig 3 6 1 3 Flowchart for measured variable inputs and outputs IBB...

Page 337: ...copying the new versions of the files project1 bin and project cfg to the FUPLA directory select Editor from the main menu and then RETURN to load the new FUPLA code ÚMain Menu ÚEditor Present Prot Funcs ÉÍÍÍÍÍÍÍÍÍÍ Edit Hardware Functions º SAVE º Edit System Parameters º Y N º List Edit Parameters º º Save Parameters to File ÈÍÍÍÍÍÍÍÍÍÍ Load Parameters from File À RETURN À Ù Fig 3 6 1 4 Editor S...

Page 338: ...ABB Switzerland Ltd REG 316 4 1MRB520049 Uen Rev F 3 300 ...

Page 339: ... can be inverted Following logic functions available for selection OR gate with 4 I P s AND gate with 4 I P s R S flip flop with 2 I P s for setting and 2 I P s for resetting The O P is 0 if at least one of the reset I P s is 1 The O P is 1 if at least one of the set I P s is 1 AND none of the reset I P s is 1 The O P status is sustained when all the I P s are at 0 Every logic has an additional bl...

Page 340: ...rmining in which set of parameters a par ticular function is active see Section 5 11 Trip Definition of the tripping circuit excited by the function s O P tripping matrix Logic Mode Definition of the logic function to be performed by the 4 binary I P s Possible settings OR OR gate with all 4 binary I P s AND AND gate with all 4 binary I P s R S flip flop Flip flop with 2 set I P s S1 and S2 and 2 ...

Page 341: ... always at logical 0 when the blocking I P is at logical 1 The blocking I P acts as a reset I P for the flip flop function BinInp1 R1 BinInp2 R2 BinInp3 S1 BinInp4 S2 Binary inputs 1 to 4 AND or OR function Reset inputs 1 and 2 and set inputs 1 and 2 RS flip flop F not used OR logic or RS flip flop T not used AND logic xx all binary inputs or outputs of protection functions ...

Page 342: ...ABB Switzerland Ltd REG 316 4 1MRB520049 Uen Rev F 3 304 ...

Page 343: ... P channel and blocking input assignable to binary I P signals protection function output signals I P channel and blocking input can be inverted adjustable reset time 2 types of time delay Integration Only the time during which the I P signal is at logical 1 counts at the end of the time delay No integration The total time from the instant the timer starts until it is either reset or expires count...

Page 344: ...unction is active see Section 5 11 Trip Definition of the tripping logic matrix excited by the function s output Trip Delay Time between start signal at the input and the tripping signal at the output Reset Delay Time required for the timer to reset after the input signal has disappeared Integration Determination of the response of the function in the presence of a pulsating I P signal 0 The delay...

Page 345: ... Ltd 3 307 BinaryInp Timer input xx all binary inputs or outputs of protection functions BlockInp Input for blocking the function F enabled T disabled xx all binary inputs or outputs of protection functions Trip Tripping signal Start Pick up signal ...

Page 346: ...tripping No tripping t t t tA tR tA tR tR 0 0 0 t t t t t t tR tA tR tR 0 0 0 0 0 0 Start prolongation Tripping Impulse No tripping tA Note Tripping only takes place if a start also occurs within the time tR tA tripping time Trip Delay tR reset time Reset Delay Fig 3 6 3 1 Operation of the Delay function without integration ...

Page 347: ... t t t tR tR tR 0 0 0 0 0 0 tint tint tR tR tint tint Setting No tripping No tripping Start Tripping Integration Start Tripping Integration Setting Setting Setting tR tint integrated time for tripping tR reset time Reset Delay Setting Trip Delay Fig 3 6 3 2 Operation of the Delay function with integration ...

Page 348: ...ABB Switzerland Ltd REG 316 4 1MRB520049 Uen Rev F 3 310 ...

Page 349: ... binary signals This function is only used for the signals of binary input modules B Features Adjustable maximum bounce time The first edge of the respective input signal is prolonged by the time SupervisTime C Inputs and outputs I C t v t inputs none II Binary inputs Binary signals input signals blocking III Binary outputs none IV Measurements none ...

Page 350: ...pervisTime Setting 1 ms 1 ms 10000 ms 1 ms BinInp 2 BinaryAddr F SupervisTime Setting 1 ms 1 ms 10000 ms 1 ms BinInp 3 BinaryAddr F SupervisTime Setting 1 ms 1 ms 10000 ms 1 ms BinInp 16 BinaryAddr F SupervisTime Setting 1 ms 1 ms 10000 ms 1 ms Explanation of parameters BinInp 1 16 Binary inputs Nos 1 16 F not used xx all binary inputs SupervisTime Maximum bounce time setting ...

Page 351: ... instructions The first edge of the input signal is prolonged by the time set for SupervisTime Connect functions requiring filtered signals to the correct binary inputs to start with The contact bounce filter Debounce may only be configured once per set of parameters ...

Page 352: ...ABB Switzerland Ltd REG 316 4 1MRB520049 Uen Rev F 3 314 ...

Page 353: ...function provision for inverting signals applied to the inputs direct connection of input to output input 1 controls output 1 input 2 control output 2 etc additional blocking input for entire function all outputs are reset to logical 0 when blocking input at logical 1 An event lists the name of the signal connected to the input and not the name of the output C Inputs and outputs I C t v t inputs n...

Page 354: ...dr ER BinOutput4 SignalAddr ER Explanation of parameters ParSet 4 1 Parameter for determining in which set of parameters a par ticular function is active see Section 5 11 Trip Does not perform any function always 0 BlockInp Binary address used as blocking input F not used xx all binary inputs or outputs of a protection function All outputs at logical 0 when the blocking input is active BinInput1 B...

Page 355: ...utput is recorded as an event can be enabled or disabled When it is enabled it ap pears on the local display Note In contrast to all other functions the name of the signal con nected to the corresponding input appears in the event list in stead of the name of the output A function can therefore be given a descriptive easily understood name that appear in the event list and on the local display ...

Page 356: ...ABB Switzerland Ltd REG 316 4 1MRB520049 Uen Rev F 3 318 ...

Page 357: ... power protection functions prolongation of short input signals B Features Input channel and blocking input can be set by Binary input signals Output signal from a protection function Provision for inverting signals applied to the inputs C Inputs and outputs I C t v t inputs None II Binary inputs Input signal Blocking III Binary outputs Start Trip IV Measurements Count reached ...

Page 358: ... ParSet 4 1 Parameter for determining in which set of parameters a par ticular function is active see Section 5 11 Trip defines the tripping channel activated by the tripping O P of the function matrix tripping logic Count Thresh Number of input impulses counted by the counter before it trips Drop time Time the counter output signal is maintained after the input signal causing it has reset Reset D...

Page 359: ...Rev F ABB Switzerland Ltd 3 321 BlockInp defines the input for an external blocking signal F function enabled T function disabled xx all binary inputs or outputs of protection functions Trip Tripping signal Start Pick up signal ...

Page 360: ...ABB Switzerland Ltd REG 316 4 1MRB520049 Uen Rev F 3 322 ...

Page 361: ...se Y connected v t s are in stalled evaluation of the fundamental frequency components high accuracy in the frequency range 0 9 1 1 fN frequency of voltage measured unless voltage too low in which case current is measured if both are too low the result is set to rated frequency at least 1 measurement per second filters for voltage and current DC components filters for voltage and current harmonics...

Page 362: ...e for selection Angle Characteristic angle for measuring real power The phase angle is also taken into account when measuring apparent power The default setting of 0 0 degrees should not be changed when voltage and current I P s are in phase when measuring purely real power e g when measuring the phase to ground voltage and current of the same conductor The setting may vary from 0 0 in the followi...

Page 363: ...ge mode Definition of the method of voltage measurement and therefore also the calculation of power Possible settings direct The voltage of the selected voltage I P is measured directly delta The phase to phase voltage formed by the selected voltage I P and the cycli cally lagging voltage channel is meas ured This setting is not permitted when only a single phase is connected or when phase to phas...

Page 364: ...ssible to retain the default reference setting of 0 0 degrees when measuring the phase to ground voltage and current of the same conductor Other settings may be necessary in the following cases a A phase to phase voltage is being measured e g meas urement of the R phase current in relation to the R S voltage phase compensation 30 0 b Compensation of c t and v t phase errors phase compensation acco...

Page 365: ...t purely active power at rated voltage and current b The active power measurement must be as close as possible to 1 000 or oscillate symmetrically to either side of it à Adjust the value of PN as necessary c The reactive power measurement must be as close as possible to 0 000 or oscillate symmetrically to either side of it à Adjust the value of Angle as necessary ...

Page 366: ...ABB Switzerland Ltd REG 316 4 1MRB520049 Uen Rev F 3 328 ...

Page 367: ...e sequence of the three phase currents provision for comparing the sum of the three phase currents with a residual current I P adjustment of residual current amplitude blocking at high currents higher than 2 x IN blocking of phase sequence monitoring at low currents below 0 05 x IN insensitive to DC components insensitive to harmonics C Inputs and outputs I C t v t inputs phase currents neutral cu...

Page 368: ...4 1 Parameter for determining in which set of parameters a par ticular function is active see Section 5 11 Trip Definition of the tripping logic matrix excited by the function s O P I Setting Current setting for tripping Delay Time between start signal at the I P and the tripping signal at the O P Forbidden settings 1 s for current settings 0 2 IN CT Compens Amplitude compensation factor for the r...

Page 369: ...phase of a three phase group is en tered SumInp Defines the neutral current input channel Any of the single phase current I P s may be selected BlockInp Input for blocking the function F enabled T disabled xx all binary inputs or outputs of protection functions Trip Tripping signal Note If the phase sequence is incorrect tripping takes place regard less of setting I Setting ...

Page 370: ...ABB Switzerland Ltd REG 316 4 1MRB520049 Uen Rev F 3 332 ...

Page 371: ...ing the sum of the three phase voltages with a residual voltage I P adjustment of residual voltage amplitude blocking at high voltages higher than 1 2 UN blocking of phase sequence monitoring at low voltages below 0 4 UN phase to phase insensitive to DC components insensitive to harmonics Evaluation of the phase voltages is only possible in the case of Y connected input transformers otherwise the ...

Page 372: ... 1 Parameter for determining in which set of parameters a par ticular function is active see Section 5 11 Trip Definition of the tripping logic matrix excited by the function s output V Setting Voltage setting for tripping Delay Time between start signal at the I P and the tripping signal at the O P Forbidden setting 1 s for voltage settings 0 2 UN VT Compens Amplitude compensation factor for the ...

Page 373: ...e group is en tered Not applicable with delta connected v t s SumInp Defines the neutral voltage input channel Any of the single phase voltage inputs may be selected BlockInp Input for blocking the function F enabled T disabled xx all binary inputs or outputs of protection functions Trip Tripping signal Note If the phase sequence is incorrect tripping takes place regard less of setting U Setting ...

Page 374: ...ABB Switzerland Ltd REG 316 4 1MRB520049 Uen Rev F 3 336 ...

Page 375: ...nals recorded in approx 5 sec onds function initiated by the general pick up or general trip sig nals or by any binary signal binary I P or O P of a protection function data recorded in a ring shift register with provision for delet ing the oldest record to make room for a new one choice of procedure if memory full either stop recording or Overwrite oldest records C Inputs and outputs I C t v t in...

Page 376: ... 3000 50 postEvent ms 40 40 400 20 recMode A Select TrigMode TrigOnStart Select StorageMode StopOnFull Select BinOutput SignalAddr ER MemFullSign SignalAddr ER AnalogInp 1 CT VT Addr AnalogInp 2 CT VT Addr AnalogInp 12 CT VT Addr BinInp 1 BinaryAddr F BinInp 2 BinaryAddr F BinInp 16 BinaryAddr F BinInp 1 no trig Select BinInp 2 no trig Select BinInp 16 no trig Select MWAInp 1 MeasVar MWAInp 12 Mea...

Page 377: ...efinition of how long the recorder runs before a possible event Event Definition of the maximum limit for the duration of an event recording mode A In recording mode B the same parame ter sets the duration of recording postEvent Definition of how long the recorder runs after an event after EventDur recMode Recording mode Definition of how events should be recorded Possible set tings A Recording on...

Page 378: ...inary signals are recorded and re cording is triggered by any of them via an OR gate and also when a protection function trips general pick up Note If the trigger conditions are connected to an OR gate and one of them is fulfilled the other trigger conditions bear no influence and no further records are made In this situation a record is initiated when the disturbance recorder is reset StorageMode...

Page 379: ...y signal as one of the trig ger signals for initiating recording All the trigger signals thus defined are connected to an OR gate so that any one of them can start recording Possible settings are No trigger The corresponding signal has no influence on the start of recording Trigger A positive going edge of the corresponding signal from logical 0 to logical 1 initiates recording Inv trigger A negat...

Page 380: ...ore the start signal the data of the event itself and the post event data The dura tions of these three periods can be independently defined How the data prior to an event is obtained requires a little more explanation Data are continuously recorded from the instant the programming of the perturbograph function has been completed They are fed into a ring shift register the older data at the beginn...

Page 381: ...that in this mode a record can be deleted before it has been trans ferred to an operator station Even if transfer of a record is in progress it will be interrupted to make room for a new record Application programs Disturbance recorder data currents voltages and measured variables can be transferred back to the RE 316 4 device using the conversion program INTERFAC in conjunction with the test set ...

Page 382: ...tal capacity and in relation to the number of sig nals is 20 for 9 analogue and 0 binary signals 40 for 9 analogue and 16 binary signals The disturbance recorder function will thus be generally confined to recording the analogue variables and be triggered by the gen eral start or general trip signals Changes in the states of binary signals are nevertheless registered by the event recorder Recordin...

Page 383: ...sufficient for 10 events of 540 ms duration each File PLOT TXT PLOT TXT for WinEVE REVAL programs for evaluating distur bance recorder data and INTERFAC data conversion program for running disturbance data on the test set XS92b General remarks The programs WinEVE REVAL and INTERFAC need the file PLOT TXT to be able to process the disturbance recorder data For INTERFAC all disturbance recorder data...

Page 384: ... D13 CO 14 D14 D14 CO 15 D15 D15 CO 1 U 0 UR CO 2 TR 0 1981 UN UN U 1 US CO 4 TR 0 1981 UN UN U 2 UT CO 11 TR 0 1981 UN UN I 3 I0 CO 10 TR 10 83 UN IN U 4 U CO 7 TR 0 1981 UN UN U 5 U CO 13 TR 0 1981 UN UN I 6 IR CO 8 TR 10 83 UN IN I 7 IS CO 12 TR 10 83 UN IN I 8 IT CO 9 TR 10 83 UN IN where N station number text S station name text Dnn binary channels text max 8 char Unn Inn voltage channel curr...

Page 385: ...68 624 in V TR 0 34312 times UN PLOT TXT Current channels RE 316 4 Protection 1 A TR 10 83 2 A TR 21 66 5 A TR 54 11 TR 10 83 times IN PLOT TXT Metering 1 A TR 0 2506 2 A TR 0 5011 5 A TR 1 253 TR 0 2506 times IN PLOT TXT These ratios enable WinEVE to determine the secondary values These ratios must be multiplied by the ratio of the main c t s and v t s to obtain the primary system values INTERFAC...

Page 386: ... based on data expressed as multiples of UN or IN Instructions for installing the data evaluation program The data evaluation program must be installed in strict accor dance with the relative operating instructions WINEVE Copy the file PLOT TXT to the directory C I650 EVENTS A disturbance should be recorded during the commissioning of every relay and the record stored in the directory given above ...

Page 387: ...s facility for editing and resaving all the station parameters texts colours etc Exception The ratios TR have to be changed in the file PLOT TXT and the file re imported and saved again as described above REVAL Copy the file PLOT TXT to the following directory C SMS REVAL EVENTS REVAL rereads the file PLOT TXT every time a disturbance rec ord is loaded however any colours specified in PLOT TXT are...

Page 388: ...ABB Switzerland Ltd REG 316 4 1MRB520049 Uen Rev F 3 350 ...

Page 389: ... j and frequency Provision for using the 3 phase current inputs in combination with either 3 phase to phase voltages or 3 phase to earth voltages 2 independent impulse counter inputs for calculation of interval and accumulated energy The three phase measurement and impulse counters can be used independently and may also be disabled Up to 4 measurement module functions can be configured on one RE 1...

Page 390: ...rent R Unit IN Current S Unit IN Current T Unit IN Active power P Unit PN Reactive power Q Unit QN Power factor cos j Unit cos phi Frequency f Unit Hz Interval energy value 1 E1Int Interval pulse number 1 P1Int Accumulated energy value 1 E1Acc Accumulated pulse number P1Acc Interval energy value 2 E2Int Interval pulse number 2 P2Int Accumulated energy value 2 E2Acc Accumulated pulse number 2 P2Acc...

Page 391: ...Select 15 min PulseInp2 BinaryAddr F Reset2 BinaryAddr F ScaleFact2 1 0000 0 0001 1 0000 0 0001 Cnt2New SignalAddr Explanation of parameters ParSet4 1 Parameter for determining in which set of parameters a par ticular function is active see Section 5 11 VoltageInp defines the voltage input channel Only three phase v t s can be set and the first channel R phase of the group of three selected must b...

Page 392: ... power measuring accuracy In many cases the default setting of 0 0 degrees will be acceptable but a different setting may be necessary to compensate the following a c t and v t phase errors à typical setting 5 5 b correction of c t or v t polarity à typical setting 180 or 180 t1 Interval Interval set for accumulating pulses assigned to E1 acc_interval and Pulse1acc_interval The following settings ...

Page 393: ...ulse1acc_interval ScaleFact1 E1accumulate Pulse1accumulate ScaleFact1 Cnt1New Output to indicate that new values are available at impulse counter 1 outputs and have been frozen The binary output is cleared 30 s after the interval starts t2 Interval See t1 Interval PulseInp2 See PulseInp1 Reset2 See Reset1 ScaleFact2 See ScaleFact1 Cnt2New See Cnt1New ...

Page 394: ... correction of direction of the measurement or c t or v t polarity à typical setting 180 0 or 180 0 Add multiple errors to obtain the correct compensation setting The angles given apply for connection according to the connections in Section 12 Voltage measurement The zero sequence component in case of delta connected v t s is assumed to be zero but with Y connected v t s the zero sequence voltage ...

Page 395: ...nimum time between the positive going edges of two input impulses is ms 40 Hz 25 1 T min Puls The pulse width is determined by the function generating the impulses and the ratio between the pulse width and the interval between lagging and leading edges should be in the range 1 3 to 1 1 i e ms 10 T 4 1 T 3 1 1 t min Pulse min Pulse min Pulse Since the impulse counter is polled approximately every 5...

Page 396: ...factor Reset Intermediate buffer accumulate Pulseacc_interval Impulse counter input Signal response Eaccumulate Pulseaccumulate Eacc_interval Pulseacc_interval tinterval t t t t tinterval tinterval tinterval Counter values to be transferred Reset Counter value to be transferred Fig 3 7 5 2 Block diagram for one impulse counter channel and signal response 3 7 5 3 Impulse counter operating principle...

Page 397: ...lse counter overflow the value of Pulseaccumulate is recorded in the event list No further measures have been included because 1 an overflow is hardly likely to occur 2 should an overflow occur it is obvious providing the counters are checked regularly for example by an SCS If necessary the total number of impulses counted since the last reset can be determined even after an overflow 3 7 5 4 Inter...

Page 398: ...the positive going edge of this output The values Eacc_interval and Pulseacc_interval of the respective channel are only recorded as measurement events providing the output Cnt1New respectively Cnt2New is being used for example to control an event recorder LED or signalling relay The freezing of results resetting and event recording of the interval counters is illustrated in Fig 3 7 5 3 tInterval ...

Page 399: ...4 4 2 3 3 Functional check 4 14 4 2 3 4 Installation and wiring 4 15 4 2 3 4 1 Location and ambient conditions 4 15 4 2 3 4 2 Checking the wiring 4 15 4 2 3 4 3 Connection of a two stage scheme 4 15 4 2 3 4 4 Connection to excitation systems with shaft mounted diodes 4 16 4 2 3 4 5 Adaptation of the scheme in the case of shaft filters 4 16 4 2 3 5 Commissioning 4 16 4 2 3 5 1 Pre commissioning che...

Page 400: ...p 4 33 4 2 5 6 Grounding resistor Re 4 34 4 2 5 7 Contactor 4 34 4 2 5 8 Residual current c t 4 34 4 2 5 9 Required REG 316 4 functions 4 35 4 2 5 10 Protection sensitivity 4 35 4 2 6 100 stator and rotor ground fault protection 4 39 4 2 7 Breaker failure protection 4 42 4 2 7 1 Introduction 4 42 4 2 7 2 Three phase single phase mode 4 43 4 2 7 3 Redundant Trip 4 43 4 2 7 4 Retrip 4 44 4 2 7 5 Bac...

Page 401: ...ernal and external circuits The binary signals are then logically processed by the main processor Only after the signals have been properly conditioned does processing of the protection function algorithms commence An additional logic programmed using FUPLA function block programming language provides convenient facility for achiev ing special circuits needed for specific applications The memory o...

Page 402: ...irculating current circuit during internal faults the special requirements to be fulfilled by the c t s A high impedance scheme is used to advantage where fault currents are relatively low discrimination is absolutely essential This is the case for phase faults on air cored compensators and earth faults on power transformers that are grounded via an im pedance In some instances solidly grounded tr...

Page 403: ...the others 4 2 1 2 2 Components of a restricted E F scheme A restricted E F scheme comprises the following items linear stabilising resistor RS REG 316 4 overcurrent function non linear resistor shorting contacts where necessary 4 2 1 2 3 Design The E F current is determined by a the generator and step up transformer reactances when the HV circuit breaker is open see Fig 4 1 b in addition to a by ...

Page 404: ...protection see Fig 4 3 The knee point voltage of the c t s is specified such that the they can supply sufficient current during an internal fault to enable the protection to trip The knee point voltage Uk of the c t s must therefore be appreciably higher than the voltage drop DUa Symbols used IE primary star point current AC component for a through fault I2 secondary current of the non saturated c...

Page 405: ...from IF U U U U k i k max 2 2 D 4 2 1 2 4 Example Determination of the stabilising resistor C t s 1000 1 A R2 5 W R m mm L 100 50 4 0 5 2 W c t lead gauge 4 mm2 Maximum earth fault through current IE 10 000 A This would be the current for an E F on an HV system with the following data xd x2 0 2 xT xT0 0 1 xsys xsys 0 0 01 I A 2 10 000 1 1000 10 DUa 5 2 x 0 5 x 10 60 V Uk 2 DUa 120 V Chosen Uk 200 ...

Page 406: ...k max 2 2 D V 905 6 200 000 30 200 2 2 Since this value exceeds the permissible maximum peak value of 2 000 V a non linear resistor must be connected across the circulating current circuit to limit the voltage Shorting contacts may also be necessary C t specification Rated currents 1000 1 A Winding resistance R2 5 W Knee point voltage Uk 200 V Magnetising current I2m 2 I2N i e I2m 0 02 A at U2 60 ...

Page 407: ...lating current circuit must be short circuited within the thermal rating time of the two resistors if an internal fault cannot be tripped in a shorter time Overcurrent function settings I Setting 0 25 IN Delay 0 02 s HEST 935 005 FL G T Power system 4 286 4 286 Fig 4 1 E F on the HV system supplied by the generator xd x2 0 2 xT xT0 0 1 The current values are referred to the rated current of the tr...

Page 408: ... 1MRB520049 Uen Rev B 4 10 HEST 935 006 FL Power system G T 9 5879 4 1238 95 8793 5 4641 95 8793 2 0619 2 0619 105 4672 Fig 4 2 E F on the HV system supplied by the generator and the HV system xd x2 0 2 xT xT0 0 1 xsys xsys 0 0 01 ...

Page 409: ...cted to the system by mistake e g when stationary during start up or when running without voltage The protection must have a short operating time to minimise the mechanical stress on the rotors and bearings of generator and turbine should the unit be connected to the system suddenly under these conditions Nevertheless it must remain stable dur ing external faults and transients Standstill protecti...

Page 410: ...ollowing items an overcurrent function Current an undervoltage function Voltage a timer Delay The block diagram can be seen from Fig 4 4 The computing re quirement is 23 HEST 935 008 FL U I Trip Block Function No 1 Voltage U Setting Delay 0 85 UN 1 00 s Function No 2 Delay TRIP time Reset time 0 0 s 20 0 s Function No 3 Current I Setting Delay 1 5 IN 0 02 s Trip Trip Standstill protection Fig 4 4 ...

Page 411: ...ance of the rotor winding to the shaft and disturbs the balance of the bridge The voltage difference across the bridge is applied to an input v t on the REG 316 4 and causes its voltage function to trip Mechanical design The ancillary unit Type YWX111 11 21 is accommodated in a casing of dimensions 183 113 81 mm for surface mounting on a panel 4 2 3 2 Determining the settings Since it is not possi...

Page 412: ...ecommended to prevent mal operation of the protection during fast load regulation on the power system This is especially the case in schemes which trip the field switch and shut the machine down Recommendation Stage 2 Trip R 2000 W t 1 5 s Stage 1 Alarm R 5000 W t 1 5 s Note that the difference voltage across the bridge is low for high leakage resistances and high for low leakage resistances 4 2 3...

Page 413: ...of 100 V AC or 220 V AC agree with the data on the rating plate of the ancil lary unit Type YWX111 11 21 Connecting up the YWX111 11 21 The supply voltage of 100 V AC or 220 V AC can be provided by the normal power distribution network or a v t connected to the generator concerned The auxiliary supply can also be taken from the input terminals of an input transformer module of the REG 316 4 used f...

Page 414: ...called shaft filter to prevent dam age to the bearings the filter reduces the sensitivity of the pro tection In such cases the sensitivity can be restored to the desired level by increasing the value of R9 in the ancillary unit Type YWX111 11 21 YWX111 11 21 Standard R 9 120 W normal sensitivity With shaft filter R 9 1 kW increased sensitivity Location of resistor R9 see Fig 4 11 4 2 3 5 Commissio...

Page 415: ... 400 V Calibration can be carried out while the machine is stationary Procedure Interrupt the REG 316 4 tripping circuits Connect an AC voltmeter to terminals 1 and 2 of YWX111 11 21 Connect a decade capacitor in place of CX Close the excitation switch Switch on the auxiliary supply USH Vary CX until the output voltage across terminals 1 and 2 of YWX111 11 21 becomes a minimum typically 50 mVr m s...

Page 416: ...ording to Fig 4 8b C C C C C C C X K S R K S R 3 3 3 3 4 2 3 5 3 Measuring the voltage values The value of the voltage across the bridge as measured on the YWX 111 in relation to different leakage resistances is deter mined by measurement with a variable resistor inserted in place of the leakage resistance as shown in Fig 4 6 Fig 4 6 Measuring the voltages corresponding to leakage resistance Leaka...

Page 417: ...tage measured for 2000 or 5000 W on the REG 316 4 The voltages are usually in the range of 0 5 and 3 V Repeat the procedure for RP 5000 W 2000 W or 0 W but connected to the minus pole 4 2 3 5 4 Testing in operation This test checks that the REG 316 and the ancillary unit function correctly with the generator in operation Once again a rotor fault is simulated by installing a leakage resistor The pr...

Page 418: ... Measure and record the voltage across terminals 1 and 2 of YWX111 11 21 during the test After the test has been completed open the grounding switch ES and close the REG 316 4 tripping circuits Checking the calibration of YWX111 11 21 Measure the voltage across the bridge at terminals 1 and 2 of YWX111 11 21 with the machine running on load with excita tion The reading should be 150 mVr m s in nor...

Page 419: ...s too sensitive the setting for the level of leakage resistance is too high or the time delay t is too short 4 2 3 6 2 Maintenance The ancillary unit requires no special maintenance As with all safety systems however it should be tested at regular intervals This can be carried out as described in Section 4 2 3 5 The shaft grounding brush should be checked and cleaned at frequent intervals and the ...

Page 420: ...it on stock is recommended Spare material must be stored in a clean dry room at moderate temperatures Testing spare units in conjunction with the routine testing of units in operation is recommended 4 2 3 9 Appendices Fig 4 8 Wiring diagram of the REG 316 and the ancillary unit Type YWX111 11 21 Fig 4 9 Wiring diagram for a two stage protection scheme Fig 4 10 Internal operation and terminals of t...

Page 421: ... AC side of the rotor circuit Fig 4 8 Wiring diagram of the REG 316 4 and the ancillary unit Type YWX111 11 21 CK1 CK2 coupling capacitors 2 x 2 µF 8 20 kV 0 55 A CK coupling capacitors 3 x 0 5 µF 8 20 kV 0 55 A CS filter capacitors for thyristor excitation USH auxiliary supply 100 V or 220 V 50 60 Hz B shaft grounding brush ...

Page 422: ...ABB Switzerland Ltd REG 316 4 1MRB520049 Uen Rev B 4 24 4 8 Fig 4 9 Wiring diagram for a two stage protection scheme ...

Page 423: ...REG 316 4 1MRB520049 Uen Rev B ABB Switzerland Ltd 4 25 Fig 4 10 Internal operation and terminals of the YWX111 11 21 Fig 4 11 Component side of the PCB in the YWX111 11 21 derived from HESG 437 807 ...

Page 424: ...it curve see upper left of Fig 4 12 which is applica ble whether the generator is connected to a step up transformer or directly to a busbar 4 2 4 3 Monitoring a given load angle The setting range also facilitates monitoring a given load angle e g d 90 for alarm purposes when a certain maximum load angle is reached fulfilling special requirements e g to take account of the in fluence of differing ...

Page 425: ...general statement applies X X sin A d XB 0 in Fig 4 13 XB can also be positive or negative and rep resented in an impedance plane by circles which do not pass through the origin In a power diagram these circles correspond to circles to the left and right of the straight lines through points C A and E Point A is common to all circles with the same load angle d and the same XA setting see Fig 4 12 ...

Page 426: ...6 4 1MRB520049 Uen Rev B 4 28 XT ZN Xd Stable SN X X X d d d X T SN 0 B A Instable Instable Instable Stable Fig 4 12 Stability limit of a generator transformer set and the characteristic of the Minreactance protection func tion ...

Page 427: ...REG 316 4 1MRB520049 Uen Rev B ABB Switzerland Ltd 4 29 Fig 4 13 Locus of the load angle d 90 ...

Page 428: ...ABB Switzerland Ltd REG 316 4 1MRB520049 Uen Rev B 4 30 Fig 4 14 Operating characteristic for different settings of XB Setting and a load angle d 90 ...

Page 429: ...rts The first part is a non discriminative ground fault detector on each busbar comprising a grounding transformer ferroresonance damping resistor Rp switched grounding resistor Re zero sequence voltage detector for switching in the resistor contactor interposing v t The second part comprises the power function and either a core balance or three bushing c t s to measure the zero sequence current a...

Page 430: ...is caused a in normal operation by asymmetries of the phase to ground the presence of a third harmonic component b under abnormal operating conditions by switching transients internal and external ground faults To avoid any risk of mal operation the setting of the ground fault detector must be higher than any voltage offset which can occur during normal operation Under abnormal conditions the volt...

Page 431: ...5 4 Grounding transformer The following arrangements can be used to increase the ground fault current 3 single phase v t s with a maximum rating of 100 kVA for 10 s This arrangement can be used at 6 66 A up to a rated generator voltage of 12 kV at 5 A up to 16 kV and at 4 A up to 20 kV 3 single phase dry v t s can conduct 6 66 A at voltages higher than 12 kV Apart from a higher overload rating a 3...

Page 432: ...ase errors increase at the maximum continuous current 4 2 5 6 Grounding resistor Re The grounding resistor must be rated for 10 s A voltage drop of 20 is allowed if a v t is used as grounding transformer For a ground fault current of 20 A and a rated voltage of UN 10 5 kV the recommended value of the resistor is UN Ubroken D Rp Re I2 V V W A v t A 10 s 10 500 500 250 2 1 7 W 240 4 2 5 7 Contactor ...

Page 433: ...und fault signalling channel 1 Generator CB closed signalling input 4 2 5 10 Protection sensitivity For a ground fault at the generator terminals a real power cur rent of 20 A results in a voltage of approximately 80 V respec tively 100 V at the input of the REG 316 4 The lower of the two voltages takes the voltage drops of three single phase v t s into account A current of 4 A and a voltage of 16...

Page 434: ...ABB Switzerland Ltd REG 316 4 1MRB520049 Uen Rev B 4 36 Fig 4 15 Discriminative ground fault and start up schemes for a generator feeder ...

Page 435: ...REG 316 4 1MRB520049 Uen Rev B ABB Switzerland Ltd 4 37 Fig 4 16 Operation of the ground fault protection for a fault a on the busbar b on a feeder ...

Page 436: ...t 2 Start up scheme v t 3 3 neutral c t s for the generator ground fault current 4 Power relay for the generator ground fault protection 5 Grounding transformer 6 Grounding resistor Re 7 Ferroresonance damping resistor Rp 8 Interposing v t 9 Voltage relay for the busbar ground fault protection Fig 4 17 Three phase diagram and vector diagram of the protection ...

Page 437: ...tly bias the star point The injection voltage has an impulse wave form with an amplitude of about 100 V and a frequency of 12 5 or 15 Hz It is provided by an injection unit Type REX 010 and an injection transformer unit REX 011 The scheme measures the ground fault leakage resistance The sensitivities of the two schemes can be set in the case of the 95 scheme by the pick up voltage typically 5 V 10...

Page 438: ...ABB Switzerland Ltd REG 316 4 1MRB520049 Uen Rev B 4 40 Fig 4 18 100 stator and rotor ground fault protection ...

Page 439: ... 5 or 15 Hz to permanently bias the potential of the rotor circuit in relation to ground The scheme signals a ground fault when the leakage resistance of the rotor circuit falls below the value set on the protection The injection voltage of 50 V is supplied by the same injection unit Type REX 010 and injection transformer unit Type REX 011 as are used for the stator ground fault scheme ...

Page 440: ...s not immediately drop to zero but to a level determined by the fault resistance and the resistance of the arc across the open CB contacts The current only becomes zero after the de ionisation time of the CB arc The pick up setting of the detector The fault level prior to operation of the CB Whether the main c t s saturate If a c t saturates its secon dary current may not pass through zero at the ...

Page 441: ...ccommodate a fourth current detector measuring the neutral current this function has to be duplicated and the second function set to the single phase mode and the appropriate cur rent pick up The two functions then operate in parallel This arrangement also covers the two special cases of phase to phase to ground and three phase to ground faults 4 2 7 3 Redundant Trip The Redundant Trip logic perfo...

Page 442: ...ction The backup trip logic trips all surrounding breakers feeding the fault 4 2 7 6 Remote Trip The Remote Trip logic trips the breaker at the remote end of the line Remote tripping can take place concurrently with the Retrip or Backup functions or not at all as desired In contrast to the other tripping commands which remain activate for a given period after the initiating signal has reset the re...

Page 443: ...ts at the end of the second time step This logic is enabled if the breaker is open and the current de tectors are still picked up indicating a fault between the breaker and the c t s The speed of tripping is determined by the time delay setting Depending on whether the single set of c t s is on the line side or bus side of the circuit breaker either the section of busbar or the circuit breaker at ...

Page 444: ......

Page 445: ...Copying a function 5 25 5 5 1 4 Deleting a function 5 26 5 5 2 Adding a new function 5 28 5 5 3 General information on editing parameters 5 28 5 5 3 1 Entering numerical settings 5 29 5 5 3 2 Selecting from a list of alternatives 5 30 5 5 4 Explanation of the types of channels 5 32 5 5 4 1 C t v t input channels 5 32 5 5 4 2 Signalling channels 5 33 5 5 4 3 Tripping channels 5 39 5 5 4 4 Binary ch...

Page 446: ...ers 5 85 5 11 2 2 Copying a protection function with its settings 5 86 5 11 2 3 Displaying a function with its settings 5 87 5 11 3 Logics 5 87 5 12 Remote HMI 5 88 5 12 1 Summary 5 88 5 12 2 Modem requirements 5 88 5 12 3 Remote HMI shell 5 89 5 12 3 1 Installation 5 89 5 12 3 2 Configuring a new station 5 89 5 12 3 3 Establishing the connection to the station 5 94 5 12 4 Configuring a remote HMI...

Page 447: ...107 5 13 4 7 Fatal device error 5 108 5 13 5 Text display LCD 5 108 5 13 5 1 General 5 108 5 13 5 2 Language 5 108 5 13 5 3 Interdependencies 5 108 5 13 5 4 Configuration 5 109 5 13 6 Menu structure 5 109 5 13 7 Entry menu 5 111 5 13 8 Main menu 5 111 5 13 8 1 Measurands 5 112 5 13 8 1 1 AD Channels 5 113 5 13 8 1 2 Load values 5 114 5 13 8 1 3 Binary signals 5 115 5 13 8 2 Event list 5 118 5 13 8...

Page 448: ...of the various menu items 5 127 5 14 4 1 Menu item Edit Event Dsc for processing Event DSC 5 127 5 14 4 2 Menu item Edit Logging Dsc for processing Logging DSC 5 129 5 14 4 3 Menu item Create New DSC Files 5 130 5 14 5 Creating a station after installing SMS010 5 131 5 14 5 1 Creating the application structure 5 131 5 14 5 2 Updating the Spin CNF file 5 135 5 14 5 3 Creating a report station 5 137...

Page 449: ...emely user friendly menus with full screen displays and a combination of overlapping win dows pop up prompts wherever practical to guide the user and avoid errors provision for creating editing and checking sets of parame ters off line i e without being connected to the protection equipment provision for transferring sets of parameters to and from files self explanatory texts using a minimum of co...

Page 450: ...ry manager is recommended The consequence is less PC main memory below 640 kB because the device drivers are loaded there instead of in the upper mem ory range This however has no influence on the operation of the HMI 5 2 2 Installing the operator program We recommend the strict observation of the following points be fore installing the software on a your hard disc 1 Ensure that your original flop...

Page 451: ...iles amongst others are in the HMI directory pcgc91 exe operator program re cfg configuration file readme e text file with explanations of the in stallation procedure and the latest information about new SW ver sions diststd bin distance protection function logic aurestd bin auto reclosure function logic Sub directory VDEW6 VDEW6 function logic Before the operator program can be executed the devic...

Page 452: ...6 REC316 REL316 LANG ENG DEU FRA COLOR BW80 RGB COMT RDM SRIO TC57 SPA MDM BAUD 1200 2400 4800 9600 19200 SLVE 10 890 Default slave No TNR T P MPAR AT FE0 RETYP REC316 LANG DEU COLOR RGB EVEDATA ONHOOK ATH0 CPUTYPE PENTIUM SLVE 2 SRIO_ADDR 950 COMT TC57 TNR T581625 MPAR AT D0E0M0S0 0 PORT 1 BAUD 9600 BAUD_XX BAUD96 The following parameters are of consequence in order to com municate with the RE 31...

Page 453: ...tarts in the off line mode or with a new empty relay as REC 316 4 The choice of relay type and the main configuration parameters can be entered or edited by selecting the menu item Edit hardware functions Start program Relay connected Relay not connected Continue off line Y N LOAD settings TEST system Main menu Main menu Are you sure Y N ON LINE OFF LINE Close program ABB logo Y Y Y N N N BACK BAC...

Page 454: ...ust be connected by a serial data cable The cable connects the serial port COM 1 or COM 2 on the PC to the optical connector on the front of the RE 316 4 The protection must be in operation i e the green stand by LED must be lit or flashing Units that are not synchronised by the station control system via the interbay bus adopt the PC time when the HMI is started ...

Page 455: ...the up and down arrow keys and then pressing Enter As the user moves down the menu structure the menus overlap each other on the screen The whole screen is used to display data Auxiliary menus and messages are displayed in pop up windows and editing functions uses a combination of windows and full screen 5 3 2 Standard key functions applicable to all menus Except while setting parameters respondin...

Page 456: ... screen The following information is displayed at the bottom of the screen Status of the connection to the RE 316 4 On line or Off line Interface baud rate 4800 bps 9600 bps or 19200 bps Active protocol for communication with the station control system SCS SCS SPA or SCS VDEW or SCS LON or SCS MVB Software version The version of the operator program is on the left and that of the device software o...

Page 457: ...ls tripping relays and signalling re lays 5 Diagnostics provides fault finding information for the protection system 6 SMS010 editor enables events and measured variables to be configured for proc essing by SMS010 7 Documentation the device configuration can be can be exported as a text file for use when engineering the SCS 8 RETURN closes the operator program All the above options are available w...

Page 458: ...0049 Uen Rev E 5 14 Editor b Event handling c d e f g Measurement values Test functions Diagnostics ENTER PASSWORD i Documentation Main menu a SMS010 Editor h Fig 5 2 Main and sub menu structure see displays a to i on the following pages ...

Page 459: ...ÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛ Fig 5 2 a Main menu ÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛ ÛABB Switzerland LtdÛÛÛÛÛÛÛÛÛÛÛÛExampleÛÛÛÛÛÛÛÛÛÛÛÛÛREG316 4 Generator TerminalÛ ÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛ ÛÚMain MenuÄÄÄÄÄÄÄÄÄÄÄ Û Û ÉEditorÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍ Û Û º º Û Û º Present...

Page 460: ... 5 6 ÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛ ÛABB Switzerland LtdÛÛÛÛÛÛÛÛÛÛÛÛExampleÛÛÛÛÛÛÛÛÛÛÛÛÛREG316 4 Generator TerminalÛ ÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛ ÛÚMaiÉMeasurement ValuesÍÍÍÍÍÍÍÍÍÍÍÍÍ Û Û º º Û Û Edº Display AD CT VT Channels º Û Û Evº Display Function Measurements º Û Û Meº Display Binary Inputs ...

Page 461: ...ÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛ Fig 5 2 e ENTER PASSWORD ÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛ ÛABB Switzerland LtdÛÛÛÛÛÛÛÛÛÛÛÛExampleÛÛÛÛÛÛÛÛÛÛÛÛÛREG316 4 Generator TerminalÛ ÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛ ÛÚMain MenuÄÄÄÄÄÄÄÄÄÄÄ Û Û ÉTest FunctionsÍÍÍÍÍÍÍÍÍ Û Û º º ...

Page 462: ...ÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛV6 2b V6 2bÛ ÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛ Fig 5 2 g Diagnostics see Section 5 8 ÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛ ÛABB Switzerland LtdÛÛÛÛÛÛÛÛÛÛÛÛExampleÛÛÛÛÛÛÛÛÛÛÛÛÛREG316 4 Generator TerminalÛ ÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛ ÛÚMain M...

Page 463: ...Editor Û Û Event Handling Û Û Measurement Values ÉÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍ Û Û Test Functions º REG2 SIG º Û Û Diagnostics º Start º Û Û SMS010 Editor º º Û Û Documentation ÈÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍ Û Û RETURN Û Û Û ÛÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ Û Û Û Û Û Û Û Û Û Û Û Û Û Û Û ÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛ ÛOn Line 9600 bps SCS SPAÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛV6 ...

Page 464: ...rrently active function in the system or insert a new function 2 Edit hardware functions Edit parameters which effect the device hardware e g con figuration analogue binary tripping and signalling channels and the OBI configuration 3 Edit system parameters Edit parameters not connected with functions 4 List edit parameters A list of the settings can be displayed on the screen saved in a file or pr...

Page 465: ... can be copied or deleted The procedure is given in Fig 5 3 Present prot func a Run function option Edit function parameters c Edit function comment d b Present prot func e Edit function parameters f Are you sure N Y g NO CHANGES SAVED TO RELAY h Present prot func i N Y Fig 5 3 Editing an active protection function see displays a to i on the following pages ...

Page 466: ...ÛÛÛÛÛÛÛÛÛÛÛÛÛV6 2b V6 2bÛ ÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛ Fig 5 3 a Present prot funcs ÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛ ÛABB Switzerland LtdÛÛÛÛÛÛÛÛÛÛÛÛExampleÛÛÛÛÛÛÛÛÛÛÛÛÛREG316 4 Generator TerminalÛ ÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛ ÛÚMain MenuÄÄÄÄÄÄÄÄÄÄ...

Page 467: ...in MAX 1ph Select ºÛ Ûº NrOfPhases 001 ºÛ Ûº CurrentInp 1 AnalogAddr ºÛ Ûº BlockInp F BinaryAddr ºÛ Ûº Trip ER SignalAddr ºÛ Ûº Start ER SignalAddr ºÛ Ûº RETURN ENTER ºÛ Ûº ºÛ Ûº ºÛ Ûº ºÛ ÛÈÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍ Û ÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛ ÛOn Line 9600 bps SCS SPAÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛ...

Page 468: ...ÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛV6 2b V6 2bÛ ÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛ Fig 5 3 d Edit function comment ÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛ ÛABB Switzerland LtdÛÛÛÛÛÛÛÛÛÛÛÛExampleÛÛÛÛÛÛÛÛÛÛÛÛÛREG316 4 Generator TerminalÛ ÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛ ÛÚMain MenuÄ...

Page 469: ...t number of the original must be lower P1 pO P4 and pO pK P4 where pO parameter set number of the original function pK parameter set number of the copied function ÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛ ÛABB Switzerland LtdÛÛÛÛÛÛÛÛÛÛÛÛExampleÛÛÛÛÛÛÛÛÛÛÛÛÛREG316 4 Generator TerminalÛ ÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛ...

Page 470: ...pleÛÛÛÛÛÛÛÛÛÛÛÛÛREG316 4 Generator TerminalÛ ÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛ ÛÚMain MenuÄÄÄÄÄÄÄÄÄÄÄ Û Û Û Û ÚEditorÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ Û Û Û Û ÚPresent Prot FuncsÄÄÄÄÄÄÉÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍ Û Û º Are you sure you º Û Û ÚRun Function OptionÄÄĺ wish to remove this º Û Û º function º Û Û Edit Run Function º N Y º Û ÛÀÄ Edit Function Name º º Û Û Co...

Page 471: ...ÛÛÛÛV6 2b V6 2bÛ ÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛ Fig 5 3 h NO CHANGES SAVED TO RELAY ÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛ ÛABB Switzerland LtdÛÛÛÛÛÛÛÛÛÛÛÛExampleÛÛÛÛÛÛÛÛÛÛÛÛÛREG316 4 Generator TerminalÛ ÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛ ÛÚMain MenuÄÄÄÄÄÄÄÄÄÄÄ ...

Page 472: ...merical value e g current or voltage settings 2 those requesting selection from a list of alternatives e g op tions or channels Window used for both types of parameters ÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛ ÛABB Switzerland LtdÛÛÛÛÛÛÛÛÛÛÛÛExampleÛÛÛÛÛÛÛÛÛÛÛÛÛREG316 4 Generator TerminalÛ ÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛ...

Page 473: ... ÛABB Switzerland LtdÛÛÛÛÛÛÛÛÛÛÛÛExampleÛÛÛÛÛÛÛÛÛÛÛÛÛREG316 4 Generator TerminalÛ ÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛ ÛÚEdit Function ParametersÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ Û Û Û Û Func Nr 2 Voltage DT V Max Voltage Û Û Û Û ParSet4 1 P1 Select Û Û Trip B10300000 Û Û Delay 02 00 s Û Û V Setting 1 200 ÉÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍ Û Û Max...

Page 474: ...ÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛ ÛABB Switzerland LtdÛÛÛÛÛÛÛÛÛÛÛÛExampleÛÛÛÛÛÛÛÛÛÛÛÛÛREG316 4 Generator TerminalÛ ÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛ ÛÚEdit Function ParametersÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ Û Û ÉSelectÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍ Û Û Func Nr 2 Voltage DT V Maº º Û Û º MIN 3ph º Û Û ParSet4 1 P1 º MIN 1ph º Û Û Trip B10300...

Page 475: ...he channels which have just been selected with the aid of the cursor and the Ins key are in dicated by X The cursor jumps to the first available channel upon opening the window 2 Single selection The channel selected is indicated by X and the X moves automatically if a new selection is made The cursor jumps to the first available channel upon opening the window Keys Move the cursor in the selectio...

Page 476: ... Û NrOfPhases 001 ÉA D Input ChannelsÍÍÍÍÍÍÍÍÍÍ Û Û VoltageInp 6 º º Û Û BlockInp f 1 Trip ºÚÄÄÚÄÄÚÄÄÚÄÄÚÄÄÚÄÄÚÄÄÚÄÄÚÄÄ º Û Û Trip S104 L03 SC1307º 1 2 3 4 5 6 7 8 9 º Û Û Start S103 ER º c c c c v Xv v v v º Û Û RETURN ENTER ºÀÄÄÀÄÄÀÄÄÀÄÄÀÄÄÀÄÄÀÄÄÀÄÄÀÄÄÙº Û Û ºVT 1ph 1 00 º Û Û ºV RS Max Voltage º Û Û ÈÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍ Û ÛÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ...

Page 477: ...ÛÛÛÛÛÛÛÛÛÛÛÛExampleÛÛÛÛÛÛÛÛÛÛÛÛÛREG316 4 Generator TerminalÛ ÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛ ÛÚEdit Function ParametersÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ Û Û Û Û Func Nr 2 Voltage DT V Max Voltage Û Û Û Û ParSet4 1 ÉSelect Binary OutputÍ Select Û Û Trip º º Û Û Delay º Signal LED s º s Û Û V Setting º Signal Relays º UN Û Û MaxMin ...

Page 478: ...that channel 1 is not available for assignment because LED 1 is always assigned to the standby alarm signal The number of the selected LED e g L03 is indicated in the pa rameter value column of the Edit function parameters window Signalling relays Before signalling relays can be assigned the respective I O unit 1 to 4 must be selected in the Select I O slot window The Signal relays selection windo...

Page 479: ...er a signal is recorded as an event is set in the Event recording window ÉÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍ º Event Recording º º ON OFF º º º ÈÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍ Fig 5 11 Setting and resetting the event recording flag ER is displayed in the parameter value column of the Edit function parameters window to indicate that the corresponding signal is recorded as an event Caution A function Pick up signal will normally...

Page 480: ...nalling channel selection window or a tripping logic signals and trips OR logic has already been assigned The procedure for assigning tripping relays is the same as for signalling relays above The plug in unit and channel numbers for the selected tripping relay e g C201 are indicated in the parameter value column of the Edit function parameters window Cxyy x plug in unit number 1 4 yy channel numb...

Page 481: ...ÄÄÀÄÄÀÄÄÙº ºÚÄÄÚÄÄÚÄÄÚÄÄÚÄÄÚÄÄÚÄÄÚÄÄÚÄÄÚÄÄÚÄÄÚÄÄ º º 21 22 23 24 25 26 27 28 29 30 31 32 º º º ºÀÄÄÀÄÄÀÄÄÀÄÄÀÄÄÀÄÄÀÄÄÀÄÄÀÄÄÀÄÄÀÄÄÀÄÄÙ º º º º º ÈÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍ Fig 5 12 Select SCS group and Signals to SCS selection windows The fields in the selection window are designated as follows Top 1 32 Channel No Bottom u used channel in use X selected channel T...

Page 482: ...RBO assignment e g R101 is indicated in the parameter value column of the Edit function parameters window Ryyxx y RBO group number 1 80 xx output relay within a group 1 16 Signal to ITL interlocking When assigning signals to the ITL interlocking data first select the group 1 to 3 in the Select ITL group window ÚSelect Binary OutputÄ ÉOutput to ITLÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍ SiÚSelect ITº º Si ºÚÄÄÚÄÄÚÄÄÚÄÄ...

Page 483: ...Û Û Delay 02 00 s Û Û V Setting 1 200 UN Û Û MaxMin MAX 1ph Select Û Û NrOfPhases 001 ÉTrip Output ChannelsÍÍÍÍÍ Û Û VoltageInp 6 º º Û Û BlockInp f 1 Trip ºÚÄÄÚÄÄÚÄÄÚÄÄÚÄÄÚÄÄÚÄÄÚÄÄ º Û Û Trip S104 L03 SC1307 ERº 1 2 3 4 5 6 7 8 º Û Û Start S103 ER º X X º Û Û RETURN ENTER ºÀÄÄÀÄÄÀÄÄÀÄÄÀÄÄÀÄÄÀÄÄÀÄÄÙº Û Û º º Û Û º º Û Û ÈÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍ Û ÛÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ...

Page 484: ...ÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛ ÛABB Switzerland LtdÛÛÛÛÛÛÛÛÛÛÛÛExampleÛÛÛÛÛÛÛÛÛÛÛÛÛREG316 4 Generator TerminalÛ ÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛ ÛÚEdit Function ParametersÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ Û Û Û Û Func Nr 2 Voltage DT V Max Voltage Û Û Û Û ParSet4 1 ÉSelect Binary InputÍÍÍ Select Û Û Trip º º Û Û Delay º Always TRUE...

Page 485: ...ut The re spective I O unit 1 to 4 is selected first and then the Binary in put channels selection window opens ÚSelect Binary InputÄÄÄ AlÚSelect IO SlotÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ Al Bi 1 Ou ÉBinary Input ChannelsÍÍÍÍ In Usable IO Slotº º In ºÚÄÄÚÄÄÚÄÄÚÄÄÚÄÄÚÄÄÚÄÄÚÄÄ º In 1 2 º 1 2 3 4 5 6 7 8 º RE º I º ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄĺÀÄÄÀÄÄÀÄÄÀÄÄÀÄÄÀÄÄÀÄÄÀÄÄÙº ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄĺCB open º º º ÈÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍ...

Page 486: ...can be assigned either inverted or non inverted to output of another function The respective function is first selected in the Output from function window and then the selection window with all the outputs of the corresponding func tion opens ÚSelect Binary InputÄÄÄ AlÚOutput from FunctionÄÄÄÄÄÄÄÄÄ Al Bi 0 1234 00 System IO ect Ou 0 1234 00 OÉ 1 Current DTÍÍÍÍÍÍÍÍÍÍÍÍ In 1 1000 00 Cº º In 2 1000 0...

Page 487: ...Select SCS GroupÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍ Alº º Biº 1 º Ouº º Inº Usable SCS Group º Inº º Inº 1 24 º REº º ÈÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍ ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ Fig 5 19 Select SCS group selection window The Inputs from SCS window appears after the group has been selected ÉInputs From SCSÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍ º º ºÚÄÄÚÄÄÚÄÄÚÄÄÚÄÄÚÄÄÚÄÄÚÄÄÚÄÄÚÄÄÚÄÄÚÄÄÚÄÄÚÄÄÚÄÄÚÄÄÚÄ...

Page 488: ...rs ÚSelect Binary InputÄÄÄ ÉInput from RBI sÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍ AlÚSelect RBºBIM Module º Al ºÚÄÄÚÄÄÚÄÄÚÄÄÚÄÄÚÄÄÚÄÄÚÄÄÚÄÄÚÄÄ º Bi 21 º 1 2 3 4 5 6 7 8 9 10 º Ou º º In Usable RºÀÄÄÀÄÄÀÄÄÀÄÄÀÄÄÀÄÄÀÄÄÀÄÄÀÄÄÀÄÄÙº In ºÚÄÄÚÄÄÚÄÄÚÄÄÚÄÄÚÄÄÚÄÄÚÄÄÚÄÄ º In 1 80º 11 12 13 14 15 16 17 18 19 º RE º X º ÀÄÄÄÄÄÄÄÄĺÀÄÄÀÄÄÀÄÄÀÄÄÀÄÄÀÄÄÀÄÄÀÄÄÀÄÄÙ º ÀÄÄÄÄÄÄÄÄÄÄÄÄĺ º º º ÈÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍ Fig 5 21 Select ...

Page 489: ...º º Inº 1 64 º REº º ÈÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍ ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ Fig 5 22 Select ITL group selection window The Inputs from ITL selection window then appears ÉInput from ITL DataÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍ º º ºÚÄÄÚÄÄÚÄÄÚÄÄÚÄÄÚÄÄÚÄÄÚÄÄÚÄÄÚÄÄÚÄÄÚÄÄÚÄÄÚÄÄÚÄÄÚÄÄÚÄÄÚÄÄÚÄÄÚÄÄÚÄÄÚÄÄ º º 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 º º X º ºÀÄÄÀÄÄÀÄÄÀ...

Page 490: ...ed key The ITL assignment e g ITL2225 is indicated in the parameter value column of the Edit function parameters window xITLyyzz x non inverted or inverted input yy ITL group No 1 64 zz data node within the group 1 49 Note A signal is available at input No 49 that indicates that the re spective device is active or not 1 respectively 0 ...

Page 491: ...ce settings The menu structure can be seen from Fig 5 24 Edit hardware functions a b Edit AD channels c Edit binary inputs d Edit trip outputs e Edit signal outputs f Edit relay configuration i IEdit IBB Configuration Edit Analogue Inputs g Edit Analogue Outputs h Fig 5 24 Editing hardware functions see displays a to i on the following pages ...

Page 492: ...ÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛ Fig 5 24 a Edit hardware functions ÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛ ÛABB Switzerland LtdÛÛÛÛÛÛÛÛÛÛÛÛExampleÛÛÛÛÛÛÛÛÛÛÛÛÛREG316 4 Generator TerminalÛ ÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛ ÛÉEdit Function ParametersÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍ Û Û...

Page 493: ...ÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛV6 2b V6 2bÛ ÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛ Fig 5 24 c Edit AD CT VT channels ÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛ ÛABB Switzerland LtdÛÛÛÛÛÛÛÛÛÛÛÛExampleÛÛÛÛÛÛÛÛÛÛÛÛÛREG316 4 Generator TerminalÛ ÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛ ÛÚMain...

Page 494: ...2bÛ ÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛ Fig 5 24 e Edit trip outputs ÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛ ÛABB Switzerland LtdÛÛÛÛÛÛÛÛÛÛÛÛExampleÛÛÛÛÛÛÛÛÛÛÛÛÛREG316 4 Generator TerminalÛ ÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛ ÛÚMain MenuÄÄÄÄÄÄÄÄÄÄÄ Û Û ÚEditorÄÄÄÄÄÄÄÄÄ...

Page 495: ...24 g Edit Analogue Inputs ÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛ ÛABB Switzerland LtdÛÛÛÛÛÛÛÛÛÛÛÛExampleÛÛÛÛÛÛÛÛÛÛÛÛÛREG316 4 Generator TerminalÛ ÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛ ÛÚMain MenuÄÄÄÄÄÄÄÄÄÄÄ Û Û ÚEditorÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ Û Û ÚEdit Hardware FunctionsÄÄÄÄ Û Û ÉEdit Analogue OutputsÍÍÍÍÍÍÍÍÍÍÍÍÍ Û ...

Page 496: ...ay bus settings and to publication 1MRB520192 Uen for the MVB process bus settings 5 5 5 1 Inserting a channel comment A comment of up to 25 characters can be entered for every channel by selecting the menu item Edit comments The pro cedure is different to that for the binary tripping and signalling channels ÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛ ÛABB Swit...

Page 497: ...ÛÛÛÛÛÛÛÛÛÛV6 2b V6 2bÛ ÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛ ÚSelect ChannelÄÄÄÄÄÄÄÄÄÄÄ ÚÄÄÚÄÄÚÄÄÚÄÄÚÄÄÚÄÄÚÄÄÚÄÄ 1 2 3 4 5 6 7 8 ÉChannels CommentÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍ º CB open º ÈÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍ ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ Fig 5 26 Editing comments for binary tripping and signalling channels After selecting the corresponding plug in unit...

Page 498: ...at start with R concern the dis tributed input system ÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛ ÛABB Switzerland LtdÛÛÛÛÛÛÛÛÛÛÛÛExampleÛÛÛÛÛÛÛÛÛÛÛÛÛREG316 4 Generator TerminalÛ ÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛ ÛÚEdit Function ParametersÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ Û Û Û Û BinInp Card Û Û ...

Page 499: ...ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ Û Û ÚEdit Hardware FunctionsÄÄÄÄ Û Û ÚEdit Binary InputsÄÄÄÄÄÄÄÄÄ Û Û ÉEdit Double IndicationÍÍÍÍÍ Û Û º º Û Û º Local Inputs º Û Û º Remote Inputs º Û Û º Edit Runtime Supervision º Û Û º RETURN º Û Û Àĺ º Û ÛÀÄÀÄ ÈÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍ Û Û ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ Û Û Û Û Û Û Û Û Û Û Û Û Û ÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛ...

Page 500: ...es facility for ena bling or disabling the runtime supervision for each double indica tion What does the runtime supervision function do Double signals are needed to unequivocally determine the status position of switchgear For this purpose the two signals de tecting the end positions of the switch are connected to two con secutive inputs and form a double indication Double indica tions are presen...

Page 501: ... Ûº Time S 103 04 03 0 s ºÛ Ûº Time S 107 08 04 0 s ºÛ Ûº Time R 101 02 04 0 s ºÛ Ûº Time R1204 05 20 0 s ºÛ Ûº RETURN ENTER ºÛ Ûº ºÛ Ûº ºÛ Ûº ºÛ Ûº ºÛ Ûº ºÛ Ûº ºÛ Ûº ºÛ Ûº ºÛ Ûº ºÛ ÛÈÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍ Û ÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛ ÛOn Line 9600 bps SCS SPAÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛ...

Page 502: ...ed 5 5 6 Editing system functions System functions include all the settings common to all func tions The menu structure can be seen from Fig 5 31 Edit system parameters a b Edit system name c Edit system password Enter new password Edit system password Enter password d e Edit system IO Fig 5 31 Editing system functions see displays a to e on the following pages ...

Page 503: ...land LtdÛÛÛÛÛÛÛÛÛÛÛÛExampleÛÛÛÛÛÛÛÛÛÛÛÛÛREG316 4 Generator TerminalÛ ÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛ ÛÉEdit Function ParametersÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍ Û Ûº ºÛ Ûº System IO ºÛ Ûº ºÛ Ûº LEDSigMode AccumSigAll Select ºÛ Ûº Confirm Pars off Select ºÛ Ûº TimeSyncByPC on Select ºÛ Ûº Relay Ready SignalAddr ºÛ Ûº GenTrip ER Sig...

Page 504: ...ÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛ Fig 5 31 c Edit system name A name of up to 25 characters can be entered for every device which then appears in the header of the HMI window ÚMain MenuÄÄÄÄÄÄÄÄÄÄÄ ÚEditorÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ ÚEdit System ParametersÄÄÄÄÄ Edit System IO ÉÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍ Edit System Name º ENTER PASSWORD º Edit System Password º º RETURN º º ÈÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍ ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ ÀÄÀÄÄÄÄÄÄ...

Page 505: ...dekanäle Special system functions similar to above Active protection functions and their parameters AD channels and their utilisation Address list Procedure list RETURN for development purposes only System name Software version Relay configuration System settings IBB RIO configuration All settings Screen Printer File Screen Printer File Screen Printer File Screen Printer File Library functions Scr...

Page 506: ...ctions Enter new parameter values Return Return Return OK OFF LINE ON LINE Acknowledge settings 3rd wrong password N Y Enter password Y N Y N Save in file Y N Y File error N Y File exists already N Overwrite Y N Save in MMI buffer Data in device not changed Save in file Menu Enter settings Fig 5 33 Flow chart for saving the contents of the editor Only if the ParamConf parameter is set ...

Page 507: ...ete set of parameters including the hardware and system configuration data can be saved in a file either on a floppy or on the hard disc by one of the following selecting the menu item Save Parameters to File repeatedly selecting RETURN as illustrated in Fig 5 33 The user is requested to enter a file name which must conform to the DOS format max 8 characters of file name and 3 char acters extensio...

Page 508: ...ÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛ ÛÚMain MenuÄÄÄÄÄÄÄÄÄÄÄ Û Û ÉEvent HandlingÍÍÍÍÍÍÍÍÍÍ Û Û º º Û Û º Display current Events º Û Û º List Event List º Û Û º Clear Event List º Û Û º Clear latched outputs º Û Û º Disturbance Recorder º Û Û º RETURN º Û Û º º Û Û ÈÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍ Û ÛÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ Û Û Û Û Û Û Û Û Û Û Û Û Û Û Û ÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛ...

Page 509: ...he PC clock The events are only displayed once i e if the sub menu is closed and then reopened the display is empty until new events are re corded If the transfer of the events to Printer or File was chosen all the events detected by the protection can be recorded over any period of time However the HMI is busy and therefore blocked while this is going on A Load or Print window indicates that the ...

Page 510: ...mber of times until it is deleted The display can be moved up or down line by line or scrolled page by page using the keys or PgUp PgDn The keys Home and End jump to the beginning respec tively end of the list ÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛ ÛABB Switzerland LtdÛÛÛÛÛÛÛÛÛÛÛÛExampleÛÛÛÛÛÛÛÛÛÛÛÛÛREG316 4 Generator TerminalÛ ÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛ...

Page 511: ... º º Disturbance Recorder º º RETURN ÈÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍ ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ Fig 5 34 e Enter password Resetting latched outputs After entering your password you can reset the outputs that latch ÚMain MenuÄÄÄÄÄÄÄÄÄÄÄ ÚEvent HandlingÄÄÄÄÄÄÄÄÄÄ Display current Events List Event List ÉÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍ Clear Event List º ENTER PASSWORD º Clear latched outputs º º Disturbanc...

Page 512: ...5 Event 2 time 92 02 06 18 10 20 e g Enter Password Delete Records No Name Ext Fig 5 34 g Operation of the disturbance recorder According to the above diagram the disturbance recorder can operate in one of the following modes List records All the records in the memory are displayed Transfer records 12 Bit One of the records is transferred The number of the record and the name of the file in which ...

Page 513: ...device inputs and outputs can be displayed The logic signals of all the FUPLA segments can be checked by selecting the menu item Display FUPLA signals This is used primarily for testing at the works 5 7 1 Displaying AD CT VT channels All 9 c t and p t inputs can be viewed at the same time ÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛ ÛABB Switzerland LtdÛÛÛÛÛÛÛÛÛ...

Page 514: ...ÛÛÛÛÛÛÛÛÛÛ ÛABB Switzerland LtdÛÛÛÛÛÛÛÛÛÛÛÛExampleÛÛÛÛÛÛÛÛÛÛÛÛÛREG316 4 Generator TerminalÛ ÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛ ÛÚMain MenuÄÄÄÄÄÄÄÄÄÄÄ Û Û ÚMeasurement ValuesÄÄÄÄÄÄÄÄÄÄÄÄÄ Û Û ÚDisplay Function MeasurementsÄÄ Û Û Û Û 1 1000 00 Current DT Û Û 2 1000 00 V Max Voltage Û Û 3 1000 00 Power Û Û 4É 1 1000 00 Current DT ÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍ...

Page 515: ...ÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛ ÛOn Line 9600 bps SCS SPAÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛV6 2b V6 2bÛ ÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛ Fig 5 38 Display binary inputs 5 7 4 Displaying analogue inputs and outputs Enter the device number to view the associated inputs or out puts ÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛ...

Page 516: ...ÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛ ÛABB Switzerland LtdÛÛÛÛÛÛÛÛÛÛÛÛExampleÛÛÛÛÛÛÛÛÛÛÛÛÛREG316 4 Generator TerminalÛ ÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛ ÛÚMain MenuÄÄÄÄÄÄÄÄÄÄÄ Û Û ÚMeasÉInput from ITL DataÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍ Û Û º º Û Û DisºÚÄÄÚÄÄÚÄÄÚÄÄÚÄÄÚÄÄÚÄÄÚÄÄÚÄÄÚÄÄÚÄÄÚÄÄÚÄÄÚÄÄÚÄÄÚÄÄÚÄÄÚÄÄÚÄÄÚÄÄÚÄÄÚÄÄ º Û Û ...

Page 517: ...ÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛ Fig 5 42 Displaying ITL data outputs 5 7 6 Displaying SCS outputs SCS outputs are displayed in 3 groups of 8 times 32 signals each Use the and keys to switch between the groups The SCS group 1 3 is displayed at the upper edge of the window ÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛ ÛABB Switzerland LtdÛÛÛÛÛÛÛÛÛÛÛÛExampleÛÛÛÛÛÛÛÛÛÛÛ...

Page 518: ...sÄÄÄÄÄÄÄÄÄÄÄÄÄ Û Û ÚDisplay FUPLA SignalsÄÄÄÄÄÄÄÄÄÄ Û Û ÚDisplay FUPLA SignalsÄÄÄÄÄÄÄÄÄÄ Û Û ÚDisplay FUPLA SignalsÄÄÄÄÄÄÄÄÄÄ Û Û Û Û OUT_O1 Û Û ÀÄ OUT_O2 ÉBOOLEAN_OUTÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍ Û Û Di OUT_O3 º ºÛ Û Di OUT_O4 º ºÛ Û DiÀÄ RETURN º TRUE ºÛ ÛÀÄ Disp º ºÛ Û DispÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÈÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍ Û Û Display SCS_O Status Û Û Display FUPLA Si...

Page 519: ...e are also displayed Load HEX dump Delete HEX dump This information is only intended for development purposes IBB information Information concerning the status of the IBB link The data displayed depend on the type of bus protocol in use LON VDEW SPA or MVB RIO information Information concerning the status of the process bus and the distributed input output system from V5 0 Reset SCS data The SCS i...

Page 520: ...ÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛ ÛÚMain MenuÄÄÄÄÄÄÄÄÄÄÄ Û Û ÉTest FunctionsÍÍÍÍÍÍÍÍÍ Û Û º º Û Û º Set Testdata º Û Û º Perform selected Test º Û Û º Event Handling º Û Û º Measurement Values º Û Û º List DiagInfo º Û Û º Parset Switching º Û Û º Lock BWA º Û Û º ToggleBWA º Û ÛÀĺ Unlock BWA º Û Û º RETURN º Û Û º º Û Û ÈÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍ Û Û Û Û Û...

Page 521: ...ÄÄÄ ÚSet TestdataÄÄÄÄÄÄÄÄÄÄÄÄÄ Set ProtectionÉSet TestdataÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍ Set Trip RelayºÚÄÄÚÄÄÚÄÄÚÄÄÚÄÄÚÄÄ º Set Signal Relº 1 2 3 4 5 6 º Set RBO Relaysº º Set LED s ºÀÄÄÀÄÄÀÄÄÀÄÄÀÄÄÀÄÄÙ º RETURN ºFrequency º ÈÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍ ÀÄ ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ RETURN ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ Fig 5 47 Set protection test data ÚMain MenuÄÄÄÄÄÄÄÄÄÄÄ ÚT...

Page 522: ...ÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍ ÀÄ ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ RETURN ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ Fig 5 49 Select IO slot ÚMain MenuÄÄÄÄÄÄÄÄÄÄÄ ÚTest FunctionsÄÄÄÄÄÄÄÄÄ ÚSet TestdataÄÄÄÄÄÄÄÄÄÄÄÄÄ Set ProtectionÉSet TestdataÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍ Set Trip RelayºÚÄÄÚÄÄÚÄÄÚÄÄÚÄÄÚÄÄ º Set Signal Relº 1 2 3 4 5 6 º Set RBO Relaysº X X X º Set LED s ºÀÄÄÀÄÄÀÄÄÀÄÄÀÄÄÀÄÄÙ º RETURN º º ÈÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍ...

Page 523: ... LED s ºÀÄÄÀÄÄÀÄÄÀÄÄÀÄÄÀÄÄÀÄÄÀÄÄÀÄÄÀÄÄÀÄÄÀÄÄÀÄÄÀÄÄÀÄÄÀÄÄÙº RETURN º º ÈÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍ ÀÄ ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ RETURN ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ Fig 5 52 Entering test data 4 Testing the analogue outputs distributed output The desired output channel can be selected using Ins af ter entering the device number The output is the value en tered when the test is ...

Page 524: ...DataÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ Set Trip Relay ÚÄÄÚÄÄ Set Signal Rel 1 2 Set RBO Relays Set Analogue O ÀÄÄÀÄÄÙ Set LED s Select CÉÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍ RETURN ÀÄÄÄÄÄÄÄĺ Enter New Value 4 00 20 00 mA º ÀÄ º º ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄĺ º ÈÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍ ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ Fig 5 55 Setting the output value Perform selected test A...

Page 525: ...ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ Û Û Û Û Û Û Û Û Û ÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛ ÛOn Line 9600 bps SCS SPAÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛV6 2b V6 2bÛ ÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛ Fig 5 56 Switching sets of parameters Lock Toggle Unlock BWA BWA is a memory range in the device in which the statuses of ...

Page 526: ...ÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛ ÛABB Switzerland LtdÛÛÛÛÛÛÛÛÛÛÛÛExampleÛÛÛÛÛÛÛÛÛÛÛÛÛREG316 4 Generator TerminalÛ ÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛ ÛÚMain MenuÄÄÄÄÄÄÄÄÄÄÄ Û Û Û Û Editor ÚBWA_LockedÄÄÄ Û Û Event Handling ÚTest FunctionsÄÄÄÄÄÄÄÄÄ Û Û Measurement Values ÉÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍ Û Û Test Functions º TRUE FALSE º Set Testdata Û Û Dia...

Page 527: ...x evt List of all the possible events with provision for de fining whether an event should be recorded as such masking recxx inp List of all the binary inputs used recxx out List of all the binary outputs used recxx pbi List of distributed input output modules with details of type and configuration recxx sig List of all signals and their main data name ad dress event No BWA index etc xx device add...

Page 528: ...s A maximum of four binary inputs are used for switching sets of parameters They are configured by selecting the menu item Edit inputs outputs in the Edit system functions menu If when configuring the inputs using the HMI they are left at their default setting of F FALSE always OFF the protection can only operate with parameter set 1 Remote sel If this I P is activated a signal from the sta tion c...

Page 529: ...ÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛ ÛABB Switzerland LtdÛÛÛÛÛÛÛÛÛÛÛÛExampleÛÛÛÛÛÛÛÛÛÛÛÛÛREG316 4 Generator TerminalÛ ÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛ ÛÚEdit Function ParametersÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ Û Û Û Û Func Nr 7 Power Û Û Û Û ParSet4 1 P2 P3 Select Û Û P Setting 0 050 PN Û Û Angle 000 0 deg Û Û Drop Ratio 60 Û Û Dela...

Page 530: ... protection function assumes precisely the same settings as the original function The following parame ters of a copied function cannot be changed subsequently all analogue inputs all signalling outputs all tripping channels The copied function must not be active in the same set of pa rameters as the original and the parameter set number of the original function must be lower RULE P1 pO P4 pO pK P...

Page 531: ...º RETURN º Û Û º º Û Û ÈÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍ Û Û Û Û Û Û Û Û Û ÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛ ÛOn Line 9600 bps SCS SPAÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛV6 2b V6 2bÛ ÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛ Fig 5 60 Presentation by the HMI of the protection functions The list of functions and thei...

Page 532: ... in an SPA_BUS loop via the SPA BUS interface control of several devices in an SPA_BUS loop via an SRIO In this operating mode the HMI sets the SRIO clock and syn chronises the device clocks control of several devices in an SPA_BUS loop via a modem link and an SRIO In this operating mode the HMI sets the SRIO clock and synchronises the device clocks safe operation since the simultaneous access by ...

Page 533: ...HMI shell The HMI shell requires an operating system Windows 3 xx Win dows 95 or Windows NT 4 x Menus guide the user through the procedures for configuring stations and devices The device HMI is started in a DOS window 5 12 3 1 Installation Place installation disc No 1 in drive A and select Run in the File menu to start the installation Fig 5 61 Starting the installation of the HMI 5 12 3 2 Config...

Page 534: ...the station new in the dialogue max 8 characters and click on OK Fig 5 63 Entering the name of the new station Then select the new station from the list that appears when the Edit menu is opened and the station configuration dialogue ap pears Fig 5 64 List for selecting the station to be configured ...

Page 535: ...cation via modem and SPA BUS interface SRIO direct communication via SRIO RDM communication via modem and SRIO BAUD Baud rate TNR Station telephone number T tone dialling P impulse dialling MPAR Modem initialisation parameters in most cases the default settings are satisfactory Select SAVE to confirm the parameter settings and update the file Fig 5 65 Window for editing the station configuration A...

Page 536: ...iles in which the char acteristics of the DOS program are entered Start the PIF editor after saving MMKShell mnu The following entries have to be made Program file name Path to the HMI file pcgc91 exe e g C MMK PCGC91 Program title Name of the window in which the HMI is running Program parameters Write the Default is replaced by the de sired name for the cfg file Save the pif file Fig 5 66 Pif edi...

Page 537: ...an be edited in the dialogue Edit NAME CFG by se lecting it from the HMI menu RETYP Device type e g REG316 LANG HMI language COLOR RGB colour screen EVEDATA Directory where the HMI saves disturbance re corder data The directory will be created if it does not already exist SLVE SPA slave address BAUD Only in conjunction with communication parameter TC57 9600 Baud or 19200 Baud Fig 5 67 Editing cfg ...

Page 538: ...eter that has been set the HMI can be started either directly or once the link has been established via the modem If the communication parameter is set to RDM or MDM connec tion has to be established via the modem The HMI menu is not available grey until the link is in operation After clicking on Connect in the Connection menu a script window opens in which the exchange of data between the modem a...

Page 539: ...5 71 Starting the HMI Select Disconnect in the Connection menu to close the link 5 12 4 Configuring a remote HMI for operation via the SPA BUS interface 5 12 4 1 Remote HMI connected directly to the electro optical con verter COMT SPA enables several devices to be controlled in an SPA BUS loop A suitable electro optical converter SPA ZC22 must be inserted between the SPA BUS loop and the PC Provid...

Page 540: ...ectro optical converter SPA ZC22 must be inserted between the SPA BUS loop and the modem Providing synchronisation is enabled the clocks in the devices are synchronised to the PC clock by a broadcast telegram when the remote HMI is started A genuine hardware handshake with the remote modem is not possible in this mode and the DTR signal is therefore not set The modem handshake must be switched off...

Page 541: ...5 73 Remote HMI connected via a modem to the electro optical converter 5 12 5 Configuring a remote HMI connected to an SRIO 5 12 5 1 Remote HMI connected directly to the SRIO COMT SRIO A bus master Type SRIO 500 1000M is used to synchronise the device clocks once a second Providing the remote HMI is on line and time synchronisation is enabled the SRIO clock is syn chronised to the PC clock ...

Page 542: ... the SRIO 5 12 5 2 Remote HMI connected via a modem to the SRIO COMT RDM The control of several devices via an SRIO can be expanded using a modem connection SRIO only provides a full hardware handshake for BUS 1 SRIO 1000M ABB Strömberg Terminal 4 1 2 RS232 SPA RS232 Telephone line HEST 953004 C MODEM SPA ZCx R Bay Units E C R Bay Units E C R Bay Units E C MODEM Fig 5 75 Remote HMI connected via a...

Page 543: ...c enabled disabled Determines time synchronisation by the remote HMI SPAComm enabled disabled Determines access to the SPA communi cation window in the remote HMI Testfunction enabled disabled Determines access to the test functions in the remote HMI Downloading enabled disabled Determines access by the remote HMI to the download function for parameter set tings When downloading is disabled change...

Page 544: ...further 5 seconds 5 12 7 1 HMI start up The exchange of data via the modem SRIO etc is much slower than when directly connected to the front of the device To avoid having to read all the device data every time the HMI is started a file called ReXX dat is created and a reference written in the device every time device data are changed and saved XX is the device s SPA address After the HMI is starte...

Page 545: ... º Û Ûº º Û Ûº 14D REG26 19 º Û Ûº º Û ÛÈÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍ Û Û Diagnostics Û Û SPAComm Û Û RETURN Û Û Û Û ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ Û Û Û Û Û Û Û Û Û Û Û Û Û Û Û ÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛ ÛOn Line 9600 bps SCS SPAÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛV6 2b V6 2bÛ ÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛ...

Page 546: ...rminal mode BUS Setup setup BUS 1 BUS 2 BUS 4 baud 9600 9600 9600 parity 2 2 0 stopbit 1 1 1 cts 1 0 0 dcd 1 0 0 aut lf 1 0 1 timeout 60000 3000 0 resend 0 3 0 ANSI_SETUP must be set to half duplex the other parameters in ANSI_SETUP are of no consequence After the new BUS modes have been saved STORE F the system has to be restarted The SRIO slave address must agree with the address in the file re ...

Page 547: ...ess and the state of the device can be viewed on the LDU but it is not possible to either change or copy device settings The device can be restarted however by selecting the corresponding menu item 5 13 3 General description The LDU is primarily intended for service personnel so that they can obtain brief information on the status of the RE 316 4 device and the protected unit A general indication ...

Page 548: ...e are thus electrically insulated A special cable has to be used to connect the PC that converts electrical into optical signals and vice versa 5 13 3 3 Password Password protection is unnecessary for the LDU 5 13 3 4 Passive operation The user communicates with the RE 316 4 via the LDU in a pas sive role i e device and process data can be viewed but none of the data or parameters displayed can be...

Page 549: ...pushbuttons perform the following functions E executes an operation ENTER function i e a menu item is executed which in the case of the LDU means moving down a level in the menu structure The button has no function on the lowest level in the menu structure C corresponds to the ESCAPE button on a PC It is used to close an active menu It returns the user from every menu item to the entry menu The up...

Page 550: ... square indicates that the respective LED is off a black square that it is lit and a diagonally half black half empty square that it is flashing lit flashing off The three LED s are described on the first line of the entry menu green yellow red Activ Start Trip ABB REC316 4 Fig 5 81 LED markings 5 13 4 2 Starting RE 316 4 The yellow and green LED s flash throughout the initialisation procedure to ...

Page 551: ... are no errors or faults the green yellow and red LED s are all off green yellow red Fig 5 84 LED statuses in normal operation 5 13 4 5 Pick up of a protection function General start The pick up of at least one protection function General start sig nal active is indicated by the fact that the green and yellow LED s light The yellow LED remains lit after the general start has reset and only extingu...

Page 552: ...measurements binary signals etc is refreshed at intervals of approximately a second 5 13 5 2 Language The LDU supports a number of languages however the lan guage used by the HMI on the PC during commissioning is the language set on the LDU and cannot be changed during normal operation The LDU language is programmed automatically to that of the HMI on the PC Care must therefore be taken when chang...

Page 553: ...vels An overview of the menu structure is given in the diagram below The user can only move from one menu item to another in a vertical direction i e it is impossible to go directly from one menu item to another on the same level but in a different branch Every menu item consists of two parts Header first line on the LCD The header shows the name of the active menu A menu name starts and finishes ...

Page 554: ...on n Function Binary Signals Input Signals RBI Inputs ITL Inputs Signal Relays Trip Relays RBO Outputs ITL Outputs Analog Signals Input signals Output signals EVENT LIST USER S GUIDE DISTURBANCE RECORDER DIAGNOSIS MENU Diagnosis Info IBB Status Info Process Bus Info LED Description RESET MENU LED Reset Latch Reset Clear Eventlist System Restart Fig 5 88 Menu structure ...

Page 555: ...d v have no effect There is nothing to select in this dis play If the RE 316 4 has not been configured Local Display appears on line 3 otherwise the name assigned to the device using the HMI on the PC Fig 5 89 shows a typical entry menu Activ Start Trip ABB REC316 4 Example V5 1 Fig 5 89 Entry menu 5 13 8 Main menu The main menu lists the groups of submenus that can be se lected to obtain more inf...

Page 556: ...urands Event list User s guide Disturbance recorder Diagnostic menu Reset menu Mainmenu Measurands Eventlist User s Guide â Fig 5 90 Main menu 5 13 8 1 Measurands The measurands menu lists all the menu items associated with measurements The name Measurands is in the header and the available submenus on the three lines below The measurements menu includes the following menu items AD Channels Funct ...

Page 557: ...er can scroll to see the other values The values and text shown units etc vary according to the configuration of the RE 316 4 Nine current or voltage input val ues can be listed and the phase angle of the measured value in relation to the reference channel is given on each line Nominal values 3 0 865IN 120 á 4 1 102UN 0 5 1 021UN 120 â Fig 5 93 Rated values Frequency display and setting the refere...

Page 558: ...unct Measurand 1 Current DT 2 U High Voltage 3 Power â Fig 5 95 Menu for selecting load values Load values display The menu lists all the measurements by the selected function that can be viewed The name of the function is in the header and its measurements on the three lines below If there are more than three measurements the entire list can be viewed using the arrow keys and v The buttons E and ...

Page 559: ...s Input Signals RBI Inputs ITL Inputs â Fig 5 97 Binary signals menu Input signals signalling relays and tripping relays The selection and display of the binary inputs signalling relays and tripping relays is very similar and therefore only the proce dure for the binary inputs is explained as an example Selecting the menu item Input signals opens a submenu with the numbers of all input output modu...

Page 560: ...s the same as on the HMI on the PC Slot 1 DB61 X X X áLSB Fig 5 99 Binary input statuses RBI and ITL inputs and outputs Since the selection and display of the RBI and ITL inputs and outputs is very similar the procedure for the RBI inputs will be explained and applies for all the others When opened the RBI inputs display shows the current statuses of the RBI inputs of the first module If no input ...

Page 561: ... one to be selected for which the input signals should be displayed Analogue Signals Input signals Output signals Fig 5 101 Analogue signals Input signals Device No 9 Device No 10 Fig 5 102 Input signals Displaying analogue variables This menu lists all the measurements of the device selected which can be displayed The device number is in the menu header and the measurements are listed below The m...

Page 562: ... are the same on the LDU and the HMI on the PC Note that an event cannot be wholly displayed because it needs 4 lines and only 3 are available It is thus always necessary to use the arrow keys v and to view all the information related to one event The text function name and unit is the same as that in the event list on the HMI on the PC Event list 32 1 Current DT 4 036 IN 13 55 57 571â Fig 5 104 E...

Page 563: ...agnostics menu This menu item gives access to the different kinds of diagnostic information that can be viewed The name Diagnosis Menu is in the header and the list of menu items below The following kinds of information are available for selection DiagnosisInfo IBB StatusInfo ProcessbusInfo LED descriptions Diagnosis Menu DiagnosisInfo IBB StatusInfo ProcessbusInfo â Fig 5 107 Diagnostics 5 13 8 5...

Page 564: ...g the and v keys The interbay bus connected SPA VDEW LON or MVB is shown on the second line together with the information Ready operational No response if no telegrams are transferred but the device is ready or Inactive this ap pears for example when the corresponding interface is not fitted The HMI on the PC must be used to obtain more de tailed information Station number and the time Neuron chip...

Page 565: ...ÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛ ÛABB Switzerland LtdÛÛÛÛÛÛÛÛÛÛÛÛExampleÛÛÛÛÛÛÛÛÛÛÛÛÛREG316 4 Generator TerminalÛ ÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛ ÛÚMain MenuÄÄÄÄÄÄÄÄÄÄÄ Û Û ÚEditorÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ Û Û ÚEdit Hardware FunctionsÄÄÄÄ Û Û ÚEdit Signal OutputsÄÄÄÄÄÄÄÄ Û Û Û Û Edit Signal Latch Û Û Edit Signal Comment ÚSelect IO SlotÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ Û Û Ed...

Page 566: ...the front of the LDU The second menu item Latch reset resets all the latched LED s on the frontplate and all latched outputs The third menu item deletes the event list only the one in the LDU and not the one in the PC The fourth menu item restarts the RE 316 4 Reset Menu LED reset Latch reset Clear event listâ Fig 5 113 Reset menu Upon selecting any of the above menu items a dialogue ap pears requ...

Page 567: ...matic display routine only starts from the entry menu providing no buttons are pressed and the PC with the HMI is not connected 5 13 9 3 Stopping the automatic display routine Stop the automatic display routine by pressing the button C clear button The entry menu appears and you can navigate through the menu structure in the normal way 5 13 9 4 Automatic display cycle The sequence of the automatic...

Page 568: ...es all the directories needed and copies all the files to the hard disc Program exam ples are to be found on Disc 2 The HMI RE 316 4 for SMS010 installation program is on SM RE 316 Disc 1 The installation program creates all the di rectories needed and copies all the files to the hard disc If SMS010 is not in the default directory a request appears to en ter the directory where SMS010 is located T...

Page 569: ...Í Û Ûº º Û Ûº Editor º Û Ûº Event Handling º Û Ûº Measurement Values º Û Ûº Test Functions º Û Ûº Diagnostics º Û Ûº SMS010 Editor º Û Ûº Documentation º Û Ûº RETURN º Û Ûº º Û ÛÈÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍ Û Û Û Û Û Û Û Û Û Û Û Û Û Û Û ÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛ ÛOn Line 9600 bps SCS SPAÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛV6 2b V6 2bÛ ÛÛÛÛÛÛÛÛÛÛÛÛÛÛ...

Page 570: ...ÛÛÛÛÛÛÛÛÛÛÛÛÛ ÛOn Line 9600 bps SCS SPAÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛV6 2b V6 2bÛ ÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛ Fig 5 116 SMS010 editor The menu items in the SMS010 editor sub menu are used for cre ating and processing the files needed for integrating SMS010 Concerned are the Reporting files EVENT DSC LOGGING DSC and CHANNEL DSC The menu it...

Page 571: ...port Yes No No ºÛ Ûº ºÛ Ûº ºÛ Ûº ºÛ Ûº ºÛ Ûº ºÛ Ûº ºÛ Ûº ºÛ Ûº ºÛ ÛÈÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍ Û ÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛ ÛOn Line 9600 bps SCS SPAÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛV6 2b V6 2bÛ ÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛ Fig 5 117 A typi...

Page 572: ...ction Reporting in the SMS010 manual for a detailed explanation of the settings Keys Page Up Þ previous page Page Down Þ next page Arrow key Þ one line up Arrow key Þ one line down Arrow key Þ moves the cursor to the right Arrow key Þ moves the cursor to the left Space bar Þ for editing settings F1 Þ help ESC Þ for terminating the program If changes were made your are requested to con firm that th...

Page 573: ...uency UN No ºÛ Ûº 22V1 45 Value of Addr 45 Distance refLength No ºÛ Ûº 22V2 45 Value of Addr 45 Distance Z RE No ºÛ Ûº 22V3 45 Value of Addr 45 Distance Z RE No ºÛ ÛÈÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍ Û ÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛ ÛOn Line 9600 bps SCS SPAÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛV6 2b V6 2bÛ...

Page 574: ... files needed from the pa rameter list of the particular device the first time the HMI is started It is also needed every time the device parameter set tings are changed In the off line mode a parameter file must be downloaded first using the editor s Load from file function since the Create new DSC files function requires the currently active set of parameter settings The following files are crea...

Page 575: ...ÍÍÍÍÍÍÍÍÍ º Alter additional configurations º º Scan and list modules º º Alter application structure º º Check application structure º º Terminal emulator º º SPA Terminal emulator º º Color setting º º View readme º ÈÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍ Enter Esc SELECT EXIT Level 1 A name for an organisation can be entered after entering a add in Select organisation ÉÍ Select Organization Í SMSBAS...

Page 576: ...l 3 The next level and the Select object bay window are reached by pressing Enter Press a to enter a bay name The Spin CNF file is also created at this level by entering c Cre ate communications parameters Provision is also made at this level for changing the SPA protocol to SRIO ÉÍ Select Organization Í SMSBASE directory ºABB PoÉÍ Select Station Í C SMS BASE ÈÍÍÍÍÍͺABB BaÉÍ Select Object Bay Í È...

Page 577: ...ÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍ C Create communication parameters SPACE next value ESC quit ENTER save Level 4 The next level and the Select unit window are reached by pressing Enter Press a to open the selection window Select for example REC 316 from this menu Then select Re port station to if you wish to create one ÉÍ Select Organization Í SMSBASE directory ºABB PoÉÍ Se...

Page 578: ...it A Add D Delete ESC previous level ENTER select Entering the address ÉÍ Select Organization Í SMSBASE directory ºABB PoÉÍ Select Station Í C SMS BASE ÈÍÍÍÍÍͺABB BaÉÍ Select Object Bay Í ÈÍÍÍÍÍͺNTP 2 ÉÍÍÍÍÍÍÍÍÍÍÍÍÍ Select Unit ÍÍÍÍÍÍÍÍÍÍÍÍÍÍ a directory ÈÍÍÍÍÍͺREC31ÉÍÍÍÍÍÍÍÍ Select Module Part of Unit ÍÍÍÍÍÍÍÍÍ ÈÍÍÍÍͺREC316 REC316 Control Protection Terminalº ÈÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍ...

Page 579: ... ÈÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍ Enter Esc SELECT EXIT Select the desired station and respond with Yes to the ques tion Continue with this file SELECT UTILITIES COMM PARAMETERS SETUP ÉÍÍÍÍÍÍÍÍÍÍÍÍÍÍSelectÍÍÍÍÍÍÍÍÍÍÍÍÍÍ ºEdit communication parameter file º ºPrint communication parameter fileº ÉÍOrganizÍÍÍÍÍÍÍÍÍÍÍÍStationÍÍÍÍÍÍÍÍÍÍÍÍObj BayÍÍÍÍÍÍÍÍÍÍÍÍUnitÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍ º ABB Power Automation ...

Page 580: ...ÍÍÍ ÈÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍ Enter Esc SELECT EXIT Select NOT USED from the Secondary protocol sub menu SELECT UTILITIES COMM PARAMETERS SETUP ÉÍÍÍÍÍÍÍÍÍÍÍÍÍÍSelectÍÍÍÍÍÍÍÍÍÍÍÍÍÍ ºEdit communication parameter file º ºPrint communication parameter fileº ÉÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍ ÍÍÍÍÍÍÍÍÍÍÍÍ º Comment º º Interface type º º Communication port º º Protocol º º Secondary protocol º º Baud rate º ÉÍÍÍÍÍÍÍÍÍÍÍ...

Page 581: ... º ÈÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍ Organiz ABB Power Automation Ltd Station ABB Baden C ALT D Change Delete comm parameter E Edit A Add D Delete ESC previous level ENTER select Level 4 Press Enter to proceed to the Select unit window and enter a Now select Report station from the list which appears ÉÍ Select Organization Í SMSBASE directory ºABB PoÉÍ Select Station Í C SMS BA...

Page 582: ...odule address is 001 º º New address 001 º º º Organiz ABB Power Automation Ltd ÈÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍ Station ABB Baden Obj Bay Report NTP Unit REPORT STATION Configuration Mod Part REPORT STATION Configuration C Create communication parameters S Show transducer file E Edit A Add D Delete ESC previous level ENTER select Take care not to enter a device address in this window 5 14 ...

Page 583: ...n Ltd Station ABB Baden Obj Bay Report NTP Enter Esc SELECT EXIT Select Report station configuration in the Select module part of unit window Level 5 SELECT UTILITIES COMM PARAMETERS SETUP ÉÍSelect OrganizationÍ º ABBÉÍSelect StationÍ ÈÍÍÍͺ ABBÉÍSelect Object BayÍ ÈÍÍÍͺ NTPÉÍÍÍÍÍÍÍÍÍÍSelect UnitÍÍÍÍÍÍÍÍÍÍ º NTPº REPÉÍÍÍÍSelect Module Part of UnitÍÍÍÍÍ º RepÈÍÍÍͺ REPORT STATION Configuration 1 º...

Page 584: ...9 1993 º º º ºÚ Ú PC file time 05 03 1996 06 37 º º Present values New values º º º º Ú Station unit address Ú Station unit address º º SACO SRIO address 950 SACO SRIO address 950 º º Ú Report station printouts Ú Report station printouts º º Alarm print save No Alarm print save No º º Event print save No Event print save No º º Logging print save No Logging print save No º º Print day report 7 Pri...

Page 585: ...he auxiliary supply 6 2 6 3 Monitoring the firmware 6 2 6 4 Monitoring the hardware 6 3 6 5 Diagnostic events 6 3 6 6 Device diagnosis 6 6 6 7 HEX dump 6 8 6 8 IBB information 6 8 6 8 1 SPA bus 6 8 6 8 2 LON bus 6 9 6 8 3 MVB 6 11 6 8 4 VDEW bus 6 13 6 9 RIO information 6 13 6 10 Resetting SCS data 6 13 6 11 Load SCS mask 6 14 ...

Page 586: ...serial communication be tween the protection and a local control and setting unit PC or with a remote system station control system is provided by a communication protocol with a Hamming distance of 4 Special functions are provided for monitoring the integrity of the v t connections and for checking the symmetry of the three phase voltages and currents 6 2 Monitoring the auxiliary supply Both the ...

Page 587: ... and the start up routine commences As soon as the standby LED lights continuously the device is operational The above routine continues to run as a background function during normal operation checking the memories excepting the RAM at frequent intervals The reference voltage is also repeatedly converted together with the current and voltage channels to monitor the A D converters 6 5 Diagnostic ev...

Page 588: ...standing by 0001H WDTO Watchdog time out 0002H WDDIS Watchdog disabled 0004H HLT Stop procedure initiated 0008H SWINT Software interrupt 0010H RAM RAM error 0100H ROM ROM error 0200H VREF Reference voltage out of tolerance 0400H ASE A D converter error 0800H EEPROM Parameter memory error 2000H The hexadecimal weighting of an error message may also be the addition of simpler errors For example VREF...

Page 589: ...C61 ready 0001H 3 1998 03 30 11 37 08 338 Diagnosis A D processor EA6 not ready 4 1998 03 30 11 37 08 338 Diagnosis Internal A D ready 0001H 5 1998 03 30 11 37 08 338 Diagnosis System status OK 6 1998 03 30 11 37 09 050 ParSatz2 ACTIVE 7 1998 03 30 11 37 09 056 Protection restart 8 1998 03 30 11 37 09 058 Relay ready ACTIVE 9 1998 03 30 11 37 09 058 Bin I P No 1 2 Q0_OPEN ACTIVE Bin I P No 1 4 Q1_...

Page 590: ...us messages can be deleted using the reset button or the reset menu on the local display unit ÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛ ÛABB Switzerland LtdÛÛÛÛÛÛÛÛÛÛÛÛExampleÛÛÛÛÛÛÛÛÛÛÛÛÛREG316 4 Generator TerminalÛ ÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛ ÛÉÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍ...

Page 591: ...us FUPLA No 1 T015 Editing program Name of the FUPLA in the device This uniquely identifies the FUPLA code loaded in the device The FUPLA code can be processed either in the program Prog or the parameter Para memory After the FUPLA code has been loaded processing commences in the parameter memory It is then copied to the program memory and runs in the background The processing speed of the program...

Page 592: ... 0000 Code segment 0588H ºÛ Ûº1000 0004 0164 Module name PARDEFST_TEXT ºÛ Ûº1000 0006 0588 Program counter 0164H ºÛ Ûº1000 0008 0004 ºÛ Ûº1000 000A 0002 ºÛ Ûº1000 000C 03F0 ºÛ Ûº1000 000E 0418 EEPROM 00000000000000101 ºÛ Ûº1000 0010 0EE4 ºÛ Ûº1000 0012 0100 ºÛ Ûº1000 0014 14B1 ºÛ Ûº1000 0016 07C8 ºÛ Ûº1000 0018 1B7C ºÛ Ûº1000 001A 17E9 ºÛ Ûº1000 001C 01AD ºÛ Ûº1000 001E 0005 ºÛ ÛÈÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍ...

Page 593: ...ÛÛÛ ÛOn line 9600 bps SCS SPAÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛV6 2b V6 2bÛ ÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛ Fig 6 4 Diagnostic menu for the LON bus LON bus information Note The data displayed is static and not refreshed after it is called LONDiagInfo Neuron Chip ID Nr 000058340300 LON Interface ID DP_MIP Domain 0 SubnetNr 1 NodeNr 1 LON Interface...

Page 594: ... messages Number of messages lost because the receive memory in the RE 316 4 was full Missed messages Number of messages lost because the receive memory on the PC card was full Reset cause Reason for the last restart executed by the PC card Interface Status Normal Configured and on line Version number PC card firmware version Error number 0 no error or error on the PC card Model number Always 0 Dr...

Page 595: ...item provides information about the PC card and the number of messages transmitted and received ÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛ ÛABB Switzerland LtdÛÛÛÛÛÛÛÛÛÛÛÛExampleÛÛÛÛÛÛÛÛÛÛÛÛÛREG316 4 Generator TerminalÛ ÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛ ÛÚMain MenuÄÄÄÄÄÄÄÄÄÄÄ Û Û ÚDiagnosticsÄÄÄÄÄÄÄÄÄÄ Û Û ÉIBB In...

Page 596: ...the PC card as connection to the inter bay bus If a PC card is not inserted Not connected is displayed on this line PC Card Status Initialising Ready Minor error Fatal error PC Card Error No error Unknown error No response Init Error Subsystem error etc PC Card Type Inter bay bus If a PC card is not inserted Software unknown is displayed PC Card SW Vers PC card firmware date and version PC Card He...

Page 597: ...ero Load MVB messages Selecting this menu item displays the last message sent or received and also the last event transmitted These data are only needed for development purposes and are not described in more detail for that reason 6 8 4 VDEW bus No special information is available for the VDEW bus 6 9 RIO information Information is displayed on the status of the process bus and the distributed inp...

Page 598: ... the file only contains text and it can therefore be edited if necessary using a normal editor Every possible event is listed with channel and event number see Index 9 OFF means that an event is masked i e it cannot be transferred to be recorded as an event Conversely ON that it is transferred and recorded The file is created automatically be the MMI and enables all the events that have been confi...

Page 599: ...nnecting the setting and control PC 7 12 7 3 1 1 Minimum PC requirements 7 12 7 3 1 2 Serial interface parameters 7 12 7 3 1 3 PC connecting cable 7 12 7 3 2 Connecting the equipment to the auxiliary d c supply 7 13 7 3 3 Connecting the binary inputs and outputs 7 13 7 3 4 Connecting v t and c t circuits 7 14 7 3 5 Connecting optical fibre cables for the longitudinal differential protection 7 15 7...

Page 600: ...oning all the wiring to the unit must be checked and the auxiliary supply voltage and the volt age for the opto coupler inputs must be measured Functional testing can be carried out with the aid of the test set Type XS92b All the essential functions of the protection are subject to con tinuous self testing and monitoring and therefore periodic main tenance and testing are not normally necessary It...

Page 601: ...the place of installation ensure that there is suf ficient space in front of the equipment i e that the serial inter face connector and the local control and display unit are easily accessible In the case of semi flush mounting or installation in 19 equip ment racks space behind the equipment must be provided for adding ancillary units e g 316DB61 and 316DB62 replacing units and changing electroni...

Page 602: ...opper strip at least 2 cm wide which should be as short as possible To prevent cor rosion a Cupal disc copper plated aluminium must be inserted between aluminium and copper parts Connect the ground rail in the cubicle to the plant ground The interconnecting cable must have at least the same gauge as the ground rail in the cubicle HEST 965 021 FL non insulated connection ground rail plant ground Fi...

Page 603: ...he shortest possible route to the nearest grounding point on the cubicle frame or mounting plate which must have a direct connection to the station ground All metal surfaces used for the ground connections must be protected against corrosion and be good electrical conductors i e no paint or non conducting agents HEST 965 022 FL Electrically conducting Electrically conducting Electrically conductin...

Page 604: ...ch have to be wired from the rack to the cubicle terminals be run separately from the c t and v t cables not in the same duct or loom This precaution reduces the parallel coupling of conducted interference Should this not be possible along the whole route parallel cou pling can be reduced by crossing at right angles Complete separation however is to be preferred RE 316 4 Aux supply Aux supply Cros...

Page 605: ...ing cable clamps The surface must be in direct contact with the plant ground and the cable screens must make good contact with the cable clamps all the way round This however is not always the case and the screen is fre quently not in contact at the sides which impairs the screening effect To overcome this drawback a special copper braid tape can be wound on top of the cable screen in the region o...

Page 606: ... make good contact with the conduit clamps all the way round b This however is not always the case and the screen is fre quently not in contact at the sides which impairs the screen ing effect To overcome this drawback a special copper braid tape can be wound on top of the cable screen in the region of the clamps This then ensures maximum screening efficiency To prevent corrosion a Cupal disc copp...

Page 607: ...rcuit should be injected In each case the phase cur rents and the neutral current should be measured The relative polarities of the c t s and their ratios can also be checked using load current Plotting the excitation curve verifies that the protection is con nected to a protection core and not a metering core Each electrically independent current circuit may only be earthed in one place in order ...

Page 608: ...nd S phases to in crease from phase to neutral to phase to phase potential and these add vectorially to produce a voltage between terminals e and n which is three times the phase to neutral voltage HEST 945 002 C R S T UT UR R S T US UR U0 US u 3 u a normal load condition b E F on T phase Fig 7 5 Voltages in an ungrounded three phase power system 7 2 5 Checking the auxiliary supply connections Che...

Page 609: ...hat the loads connected to all the contacts are within the specified ratings given in the Contact ratings section of the data sheet 7 2 7 Checking the opto coupler inputs Check the polarity and supply voltage of all opto coupler inputs in relation to the ordering code also given on the rating plate at the rear of the equipment ...

Page 610: ... fulfilled by the HMI PC are MS Windows 3 1x Windows 95 or Windows NT4 0 operating system or higher 16 MByte RAM 1 floppy drive 3 1 44 MByte and a hard disc with at least 12 MByte of free space 1 serial interface RS 232C 1 parallel interface Centronics 7 3 1 2 Serial interface parameters The HMI initialises the serial interface and automatically sets the corresponding parameters 7 3 1 3 PC connect...

Page 611: ...and B for the second unit In the case of the wide casing N2 the binary inputs and out puts have to be wired to connectors G and H at the rear for the first unit to connectors E and F for the second to connectors C and D for the third unit and to connectors A and B for the fourth unit All external auxiliary relays or other inductances controlled by signals from the protection must be fitted with fr...

Page 612: ...terminals Type and gauge of wire The v t and c t connections to the terminals are made with 2 5 mm2 stranded wire e g H07V K The ends of the wires in this case must be fitted with crimped sleeves V t and c t connections may be made alternatively by 4 mm2 solid wire Terminating the wires Insert the ends of the wires perpendicularly to the rear of the device into the terminals and secure them by tig...

Page 613: ...perate correctly it is not enough for just the protection equipment itself to be in order the reliable operation of the other items of plant in the protection chain such as circuit breakers c t s and v t s e g protection and metering core leads exchanged station battery earth fault alarm and signalling circuits etc and all the cabling is equally important The correct operation of the equipment its...

Page 614: ... Incorrect assignment Energisation of all auxiliary tripping re lays using the test function Hardware defect Incorrect assignment Energisation de energisation of all aux iliary signalling relays using the test function Hardware defect Incorrect assignment A further useful facility is provided by the Display analogue val ues menu which enables the currents and voltages applied to the protection to ...

Page 615: ... An increase of 10 C shortens the life by half and a de crease of 10 C extends it by half 7 4 1 Fault finding 7 4 1 1 Stand by LED on the frontplate The following may be possible causes should the green stand by LED not light continuously but be extinguished or flash al though the auxiliary supply is switched on Stand by LED extinguished The auxiliary supply unit Type 316N65 is not properly in ser...

Page 616: ...re key with the pro grammed functions before it actually downloads the settings and reports and error if they do not agree EPLD error 7 4 1 2 Human machine interface If communication between the protection equipment and the PC this is not possible in spite of the fact that the stand by LED is lit first check the serial interface connectors and connecting cable Where the connection appears to be in...

Page 617: ...9 1000 0012 00A0 1000 0014 00E1 1000 0016 0730 1000 0018 0000 1000 001A 0000 1000 001C 0000 1000 001E 0005 7 4 1 3 Restarting The detection of an error or defect by the self testing and moni toring functions during normal operation initiates the following Processing by the protection functions is stopped and their operation blocked The binary outputs are reset and further operation blocked This in...

Page 618: ...replaced in the case of error messages con cerning the main or logic processors Should the diagnostic function report an error in the A D proces sor type 316EA62 although none is fitted the message can be ignored If one is fitted however it must be replaced An entry is made in the event list every time the protection is re started ...

Page 619: ...t because it is stored in a read write memory flash EPROM s Generally the software must be updated by ABB personnel Nevertheless the procedure is described below so that it can be performed by correspondingly qualified personnel PC experi ence essential if necessary 7 5 1 Settings Make a backup copy of the settings using the HMI menu items Enter function parameters and Save in file Then close the ...

Page 620: ...plished by running the corresponding batch file For this purpose make the active directory the HMI di rectory via the File Manager Windows 3 1 or 3 11 or Explorer Windows 95 98 or NT 4 0 and execute the appropriate batch file The version type of processor board 316VC61a or 316VC61b and the desired communication protocols are then displayed again Click on N no to abort or on Y yes to con tinue The ...

Page 621: ... of the program memory in the main processor unit Devices with the main processor unit 316VC61a have to be opened and the main processor unit removed from them Fit the two jumpers X601 and X602 and reinsert the main processor unit Switch on the auxiliary supply and wait for thirty seconds Switch off the auxiliary supply and withdraw the main processor again The program is now deleted Remove the tw...

Page 622: ...ABB Switzerland Ltd REG 316 4 1MRB520049 Uen Rev C 7 24 Fig 7 7 Main processor unit 316VC61a showing the jumpers X601 and X602 derived from HESG 324 502 ...

Page 623: ...recautions which have to be taken to guard against electrostatic discharge Before handling units discharge the body by touching the station ground cubicle Hold units only at the edges do not touch contacts or com ponents Only store and transport units in or on the original packing Tools required Relays can be opened at the rear The backplates are secured either Philips screws or Torx screws Accord...

Page 624: ...rder to keep records of the PCB s installed up to date the corresponding data should be forwarded to ABB Switzerland Ltd when PCB s are changed see Appendix Caution When replacing a processor board Type 316VC61a the po sitions of the jumpers must be checked in relation to Fig 7 8 Devices with LDU Devices without LDU Fig 7 8 Jumper positions on the processor board 316CV61a for devices with and with...

Page 625: ...ccording to Fig 7 9 These jumpers are located between the two connectors Including LDU X2200 X2201 X2203 X2204 X2206 X2207 Excluding LDU X2201 X2202 X2204 X2205 X2207 X2208 Fig 7 9 Jumper positions on the 316VC61b processor board for devices including and excluding a local control and display unit LDU on the front derived from HESG 324 526 ...

Page 626: ......

Page 627: ... 8 TECHNICAL DATA Data Sheet REG 316 4 1MRK502004 Ben Data Sheet REX 010 REX 011 1MRB520123 Ben C t requirements for the differential protection of power transformers CH ES 30 32 10 E C t requirements for the differential protection of generators CH ES 30 32 20 E ...

Page 628: ......

Page 629: ...he REG316 4 terminal are the protection of gen erators motors and unit transformers The modular design makes it extremely flexi ble and simple to adapt to the size of the pri mary system installation and the desired pro tection schemes to be included Economic solutions can thus be achieved in the full range of applications for which it is intended Different degrees of redundancy are possible avail...

Page 630: ... per form logical functions e g external en abling or blocking signals with the output signals of an internal protection function and then used to block one of the other protection functions Design The REG316 4 belongs to the generation of fully numerical generator protection termi nals i e analogue to digital conversion of the input variables takes place immediately after the input transformers a...

Page 631: ...its power supply unit connecting mother PCB housing with connection terminals In the analog input unit an input transformer provides the electrical and static isolation between the analogue input variables and the internal electronic circuits and adjusts the sig nals to a suitable level for processing The input transformer unit can accommodate a maximum of nine input transformers volt age protecti...

Page 632: ... as well as to the remote I O s REG316 4 can have one to four binary I O units each These units are available in three versions a two tripping relays with two heavy duty contacts 8 optocoupler inputs and 6 signalling relays Type 316DB61 b two tripping relays with two heavy duty contacts 4 optocoupler inputs and 10 sig nalling relays Type 316DB62 c 14 optocoupler inputs and 8 signalling relays Type...

Page 633: ...usive OR gate Analogue functions ABS Absolute value ADD Adder subtracter ADDL Long integer adder sub tracter ADMUL Adder multiplier CNVIL Integer to long integer converter CNVLBCD Long integer to BC con verter CNVLI Long integer to integer converter CNVLP Long integer to percent converter CNVPL Percentage to long inte ger converter DIV Divider DIVL Long integer divider FCTL Linear function FCTP Po...

Page 634: ...alue evaluation 50 Inverse time overcurrent 51 Directional definite time overcurrent protection 67 Directional inverse time overcurrent function 67 Voltage controlled protection 51 27 Thermal overload function 49 Stator overload 49S Rotor overload 49R Inverse time negative phase sequence 46 Negative phase sequence current 46 Generator differential 87G Transformer differential 87T 3 winding trafo d...

Page 635: ...supervision feature enables checking the opening and closing of all kinds of breakers circuit breakers isolators ground switches Failure of a breaker to open or close within an adjustable time results in the creation of a corresponding sig nal for further processing Plausibility check The current and voltage plausibility functions facilitate the detection of system asymmet ries e g in the secondar...

Page 636: ...Event erasing Warm start Remote communication REG316 4 is able to communicate with a sta tion monitoring and evaluation system SMS or a station control system SCS via an opti cal fibre link The corresponding serial inter face permits events measurements distur bance recorder data and protection settings to be read and sets of parameter settings to be switched Using the LON bus permits in addition ...

Page 637: ...ro grams An important advantage of the extensive self diagnosis and supervision functions is that periodic routine maintenance and testing are reduced Supporting software The operator program facilitates configura tion and setting of the protection listing pa rameters reading events and listing the vari ous internal diagnostic data The evaluation programs REVAL and WIN EVE MS Windows Windows NT ar...

Page 638: ...unit 316DB61 or 316DB62 with 2 N O contacts each 1 5 mm2 terminals Max operating voltage 300 V AC or V DC Continuous rating 5 A Make and carry for 0 5 s 30 A Surge for 30 ms 250 A Making power at 110 V DC 3300 W Breaking capacity for L R 40 ms Breaking current with 1 contact at U 50 V DC at U 120 V DC at U 250 V DC 1 5 A 0 3 A 0 1 A Breaking current with 2 contacts in series at U 50 V DC at U 120 ...

Page 639: ...sign the LED s to protection functions Local via the communication interface on the front port connector using an IBM compatible PC with Win dows NT 4 0 or Windows 2000 The operator program can also be operated by remote control via a modem Operator program in English or German RS232C interface Data transfer rate Protocol Electrical optical converter optional 9 pin Sub D female 9600 Bit s SPA or I...

Page 640: ...in IEC 60255 21 3 1995 IEEE 344 1987 Leakage resistance 100 MW 500 V DC EN 60255 5 2001 IEC 60255 5 2000 Insulation test 2 kV 50 Hz 1 min 1 kV across open contacts EN 60255 5 2001 IEC 60255 5 2000 EN 60950 1995 Surge voltage test 5 kV 1 2 50 ms EN 60255 5 2001 IEC 60255 5 2000 1 MHz burst disturbance test 1 0 2 5 kV Cl 3 1MHz 400 Hz rep freq IEC 60255 22 1 1988 ANSI IEEE C37 90 1 1989 Fast transie...

Page 641: ...hanical design Weight Size N1 casing Size N2 casing approx 10 kg approx 12 kg Methods of mounting semi flush with terminals at rear surface with terminals at rear 19 rack mounting height 6U width N1 225 2 mm 1 2 19 rack Width N2 271 mm Enclosure Protection Class IP 50 IP 20 if MVB PCC are used IPXXB for terminals ...

Page 642: ...nrush currents Settings Pick up current 0 02 to 20 IN in steps of 0 01 IN Delay 0 02 to 60 s in steps of 0 01 s Accuracy of the pick up setting at fN 5 or 0 02 IN Reset ratio overcurrent undercurrent 94 for max function 106 for min function Max operating time without intentional delay 60 ms Inrush restraint pick up setting reset ratio optional 0 1 I2h I1h 0 8 Table 12 Definite time voltage functio...

Page 643: ...oltage input range Voltage memory range Accuracy of angle measurement at voltage mem ory Frequency dependence of angle measurement at voltage memory Max Response time without delay 0 005 to 2 UN 0 005 UN 20 0 5 Hz 60 ms Table 14 Directional inverse time overcurrent function 67 Directional overcurrent protection with detection of the power direction Backup protection for distance protection scheme ...

Page 644: ...ges Suppression of DC components and harmonics in current and voltage Compensation of phase errors in main and input c t s and v t s Settings Phase angle 180 to 180 in steps of 0 1 Reference value of the power SN 0 2 to 2 5 SN in steps of 0 001 SN Refer to Table 46 for accuracy Table 16 Three phase measuring module Three phase measurement of voltage star or delta current frequency real and apparen...

Page 645: ...transformers Three phase function Current adaptive characteristic High stability for external faults and current transformer saturation No auxiliary transformers necessary because of vector group and CT ratio compensation Inrush restraint using 2nd harmonic Settings g setting 0 1 to 0 5 IN in steps of 0 1 IN v setting 0 25 or 0 5 b setting 1 25 to 5 in steps of 0 25 IN Max trip time protected tran...

Page 646: ...ment for current Positive sequence voltage evaluation Settings Current 0 5 to 20 IN in steps of 0 1 IN Voltage 0 4 to 1 1 UN in steps of 0 01 UN Delay 0 5 to 60 s in steps of 0 01 s Hold time 0 1 to 10 s in steps of 0 02 s Accuracy of pick up value 5 at fN Reset ratio 94 Starting time 80 ms Table 21 Inverse time overcurrent function 51 Single or three phase measurement with detection of the highes...

Page 647: ...46 Features Protection against unbalanced load Definite time delay Three phase measurement Settings Negative phase sequence current I2 0 02 to 0 5 IN in steps of 0 01 IN Delay 0 5 to 60 s in steps of 0 01 s Accuracy of pick up value 2 IN at fN I IN with measuring transformers Reset ratio I2 0 2 IN I2 0 2 IN 94 90 Starting time 80 ms Table 24 Instantaneous overvoltage prot function 59 27 with peak ...

Page 648: ...N lN Delay 0 2 to 60 s in steps of 0 01 s Reset ratio 106 Starting time 50 ms at fN Accuracy of pick up values 5 Features Detection of loss of excitation failure of synchronous machines Single or three phase measurement Out of step detection with additional time delay or count logic Circular characteristic Tripping possible inside or outside the circle Fig 7 Minimum reactance protection function c...

Page 649: ...d protection function characteristics Settings Base current IB 0 5 to 2 5 IN in steps of 0 01 IN Time multiplier k1 1 to 50 s in steps of 0 1 s Pick up current Istart 1 0 to 1 6 IB in steps of 0 01 IB tmin 1 to 120 s in steps of 0 1 s tg 10 to 2000 s in steps of 10 s tmax 100 to 2000 s in steps of 10 s treset 10 to 2000 s in steps of 10 s Accuracy of current measurement 5 at fN 2 at fN with measur...

Page 650: ...rrent IB 0 5 to 2 5 IN in steps of 0 01 IN Time multiplier k1 5 to 30 s in steps of 0 1 s Factor k2 pick up 0 02 to 0 20 in steps of 0 01 tmin 1 to 120 s in steps of 0 1 s tmax 500 to 2000 s in steps of 1 s treset 5 to 2000 s in steps of 1 s Accuracy of NPS current I2 measurement 2 at fN with measuring transformers Starting time 80 ms Features Maximum or minimum function over underfrequency Minimu...

Page 651: ... Features U f measurement Minimum voltage blocking Settings Pick up value 0 2 to 2 UN fN in steps of 0 01 UN fN Delay 0 1 to 60 s in steps of 0 01 s Frequency range 0 5 to 1 2 fN Accuracy at fN 3 or 0 01 UN fN Reset ratio 97 max 103 min Starting time 120 ms Table 33 Overexcitation function with inverse time delay 24 Features Single phase measurement Inverse time delay according to IEEE Guide C37 9...

Page 652: ...pping decision Variable tripping and reset delay Suppression of d c components Suppression of harmonics Fig 10 Tripping characteristic Voltage comparison shown for the phases R and the setting value volt diff 0 2 UN Settings Voltage difference 0 1 to 0 5 UN in steps of 0 05 UN Trip delay 0 00 to 1 0 s in steps of 0 01 s Reset delay 0 1 to 2 0 s in steps of 0 01 s Reset ratio 90 Accuracy of pick up...

Page 653: ...f the earth ground fault resistance Alarm and tripping values are entered resp measured and displayed in kW Type of earthings groundings Star point earthing with resistors requires REX011 Star point earthing with grounding transformer requires REX011 1 Earthing transformers on generator terminals requires REX011 2 Settings Alarm stage 100 W to 20 kW in steps of 0 1kW Delay 0 2 s to 60 s in steps o...

Page 654: ...r earthing resistance RPR 100 W to 500 W rotor earthing resistance RER 900 W to 5 kW coupling capacity 4 mF to 10 m F time constant T RER x C 3 to 10 ms The actual earthing resistance RER RPR have to be calculated in accordance with the User s Guide The 100 rotor earth fault protection function always requires an injection unit type REX010 and an injec tion transformer block type REX011 which are ...

Page 655: ...5 UN IN in steps of 0 001 UN IN Reset ratio 30 to 170 in steps of 1 Accuracy of the pick up setting 10 of setting or 2 UN IN for protection c t s 3 of setting or 0 5 UN IN for core balance c t s Max operating time without intentional delay 70 ms Table 40 Breaker failure protection 50BF Features Individual phase current recognition Single or three phase operation External blocking input Two indepen...

Page 656: ... s TPY and current setting 1 2 IN 38 ms with main c t s TPY and current setting 0 4 IN Max 9 c t v t channels Max 16 binary channels Max 12 analogue channels of internal measurement values 12 samples per period sampling frequency 600 or 720 Hz at a rated frequency of 50 60 Hz Available recording time for 9 c t v t and 8 binary signals approximately 5 s Recording initiated by any binary signal e g ...

Page 657: ...cks for currents exceeding 2 x IN respectively voltages exceeding 1 2 UN Accuracy of the pick up setting at rated frequency 2 IN at 0 2 to 1 2 IN 2 UN at 0 2 to 1 2 UN Reset ratio 90 95 at U 0 1 UN or I 0 1 IN Current plausibility settings Pick up differential for sum of internal summation current or between internal and external summation currents 0 05 to 1 00 IN in steps of 0 05 IN Amplitude com...

Page 658: ...IfPQ and three phase measuring module including input voltage and input current c t Input variable Accuracy Conditions Core balance c t s with error compensation Protection c t s without error com pensation Voltage 0 5 UN 1 UN 0 2 to 1 2 UN f fN Current 0 5 IN 2 IN 0 2 to 1 2 IN f fN Real power 0 5 SN 3 SN 0 2 to 1 2 SN 0 2 to 1 2 UN 0 2 to 1 2 IN f fN Apparent power 0 5 SN 3 SN Power factor 0 01 ...

Page 659: ...1 Wiring diagram Fig 12 Typical wiring diagram of REG316 4 in size N1 casing with two input output units 316DB62 TRIP COMMUNICATION PORT LOCAL HMI PC SERIAL COMMUNI CATION WITH SUB STATION CONTROL EARTHING SCREW ON CASING OPTOCOUPLER INPUTS CURRENT AND VOLTAGE INPUTS SIGNALLING ACC TO K CODE CD SUPPLY ...

Page 660: ...um maximum df dt rate of change of frequency protection U f inv overexcitation protection with inverse time delay Vbal voltage balance protection Power power function LossEx minimum reactance protection UZ minimum impedance protection Polsl pole slip protection DiffT transformer differential protection DiffG generator differential protection EFStat100 100 stator ground fault protection EFRot100 10...

Page 661: ...urrent plausibility UlfPQ metering only if at least 1 voltage is available MeasMod three phase measuring module Delay delay integrator Count counter Logic logic interconnection NPSDT negative phase sequence current protection NPSInv inverse time negative phase sequence current protection OLStat stator overload OLRot rotor overload CAP316 project specific control logic DRec disturbance recorder BFP...

Page 662: ...voltage transformer MT metering transformer see previous table K62 3 CTs 3ph Code A 1 MT 1ph Code B 1 VT 1ph Code U 1 VT 1ph Code U 3 VTs 3ph delta Code U K63 3 CTs 3ph Code A 3 CTs 3ph Code C 3 VTs 3ph delta Code U K64 3 CTs 3ph Code A 3 VTs 3ph delta Code U 3 VTs 3ph delta Code U K65 3 CTs 3ph Code A 3 CTs 3ph Code C 3 CTs 3ph Code D K66 3 CTs 3ph Code A 3 MTs 3ph Code B 3 VTs 3ph delta Code U K...

Page 663: ...al relays 2 command relays 3 binary input output unit Type 316DB61 see previous table Q2 4 optocoupler 10 signal relays 2 command relays 3 binary input output unit Type 316DB62 Q3 14 optocoupler 8 signal relays 3 binary input output unit Type 316DB63 V V0 V3 V4 V5 V9 none 82 to 312 V DC 36 to 75 V DC 18 to 36 V DC 175 to 312 V DC 3 binary input output unit optocoupler input voltage state R R0 none...

Page 664: ...ove und the required accessories can be ordered according to the following Table N N1 N2 casing width 225 2 mm casing width 271 mm see previous table M M1 M51 Semi flush mounting Surface mounting standard ter minals Order M1 and sepa rate assembly kit for 19 rack mounting S SR000 to SS990 basic versions REG316 4 see previous table T T0000 T0001x to T9999x none FUPLA logic Customer specific logic x...

Page 665: ...2 5 125 HESG 448735R0232 RS232C interbay bus interface Type Protocol Connector Optical fibre Gauge Order No 316BM61b SPA ST bajonet G G 62 5 125 HESG448267R401 316BM61b IEC 60870 5 103 SMA screw G G 62 5 125 HESG448267R402 316BM61b SPA Plug plug P P HESG448267R431 receiver Rx transmitter Tx G glass P plastic optical fibre conductor gauge in mm Human machine interface Type Description Order No CAP2...

Page 666: ...Numerical generator protection ABB Switzerland Ltd Utility Automation REG316 4 1MRK502004 Ben Page 38 Dimensioned drawings Fig 13 Semi flush mounting rear connections Size N1 casing ...

Page 667: ...Numerical generator protection ABB Switzerland Ltd Utility Automation REG316 4 1MRK502004 Ben Page 39 Fig 14 Semi flush mounting rear connections Size N2 casing ...

Page 668: ...tection REG316 4 1MRK502004 Ben Page 40 Dimensioned draw ings cont d Dimensioned draw ings cont d ABB Switzerland Ltd Utility Automation Fig 15 Surface mounting casing able to swing to the left rear connections Size N1 casing ...

Page 669: ...Numerical generator protection REG316 4 1MRK502004 Ben Page 41 ABB Switzerland Ltd Utility Automation Fig 16 Surface mounting casing able to swing to the left rear connections Size N2 casing ...

Page 670: ... PC connecting cable if not already available 1MRB380084 R1 Alternatively the relay ID code may be given instead In this case the order would be 1 REG316 4 A1B0C1D0U1K63E2I 3F2J3Q0V0R0W0Y1N1M1SR200T0 1 mounting kit HESG324310P1 1 CD RE 216 RE 316 4 1MRB260030M0001 1 PC card HESG448614R1 1 PC connecting cable if not already available 1MRB380084 R1 Relay ID codes are marked on all relays The signifi...

Page 671: ...Numerical generator protection REG316 4 1MRK502004 Ben Page 43 ABB Switzerland Ltd Utility Automation ...

Page 672: ...n REG316 4 1MRK502004 Ben Page 44 ABB Switzerland Ltd Utility Automation Brown Boveri Strasse 6 CH 5400 Baden Switzerland Tel 41 58 585 77 44 Fax 41 58 585 55 77 E mail substation automation ch abb com www abb com substationautomation Printed in Switzerland 0203 1000 0 ...

Page 673: ...iple is based on the well known offset method using injection of a low frequency signal Suitable for updating existing plants Insensitive to external disturbances Application The unit is applied for the protection of gen erators in block configuration for earth faults on the generator side For the implementation of the 100 stator and rotor earth fault protection using a REG216 316 4 an injec tion ...

Page 674: ...ing earth fault resistance and decreasing earth fault current Fig 1 At standstill the full stator winding 100 is protected by the 100 function as seen in Fig 2 At the same time the entire excitation winding is protected for earth faults Because of the excellent rejection of external interfer ences the REX010 011 can be applied to all types of excitation systems including thyris tor type Fig 2 Hard...

Page 675: ...are calculating the instanta neous earth fault resistance from the input signal pairs Uis Ui and Uir Ui respectively During the quiescent period the filtered sig nals Uis and Uir are examined for interfer ence from the protected object or the connec ted network This examination is used to vali date the previous calculation of the earth fault resistance The reference signal Ui is continuously super...

Page 676: ...ttings of 10 kΩ 120 with settings of µF10 kΩ Accuracy 100 Ω to 10 kΩ 10 0 to 100 Ω 10 kΩ to 25 kΩ 20 Operating time 1 5 s Machine and system parameters Rotor earth capacitance 200 nF to 1 µF Rotor earth resistance RPr 100 Ω to 500 Ω Rotor earth resistance REr 900 Ω to 5 kΩ Coupling capacitance 4 µF to 10 µF Time constant T REr x C 3 to 10 ms The effective earth resistances REr and RPr must be calc...

Page 677: ...t protection with earthing transformer on star point Fig 7 Single pole rotor connection earthing with resistors Type of auxiliary transformer WU30Z Primary voltage 2 x 110 V Secondary voltage REX011 REX011 1 REX011 2 110 V 50 V Terminals UK5 Phoenix 5 mm2 4 x 0 86 V 50 V Terminals UHV50 Phoenix 50 mm2 4 x 6 4 V 50 V Terminals UHV50 Phoenix 50 mm2 Auxiliary contactor P8nax 8 normally open contacts ...

Page 678: ...ity Automation REX010 011 1MRB520123 Ben Page 6 Diagrams cont d Fig 8 Two pole rotor connection Fig 9 Connection diagram REX010 REX011 Dimensions All dimensions in mm Front view Rear view Fig 10 REX010 T Input and output voltages cross section 4 mm2 H Auxiliary supply Front view Panel cutout Fig 11 REX010 ...

Page 679: ...HESG 323888 M21 Earthing transformer on generator terminals Fig 5 REX011 2 R Ps 1 8 Ω HESG 323888 M22 Earthing transformer on generator terminals Fig 5 REX011 2 R Ps 7 2 Ω HESG 323888 M23 Earthing transformer on generator terminals Fig 5 If R Ps is not yet known when ordering please order M11 resp M21 The version required later may be rewired The coil voltage for the P8 contactor must be stated an...

Page 680: ...e MIH 800 2 for the rotor earth fault protec tion may be ordered through ABB Switzer land Ltd The associated protection package system REG216 REG316 4 must be ordered sepa rately according to the appropriate Data Sheet References REG 316 4 Data Sheet REG316 4 Operating Instructions printed REG316 4 Operating Instructions CD REG216 Data Sheet REG216 Operating Instructions printed REG216 Operating I...

Page 681: ...me type is on both sides of the transformer Possibly ABB Switzerland Ltd Utility Auto mation can be contacted for confirmation that the actual type can be used The current transformer ratio should be selected so that the current to the protec tion is larger than the minimum operating value for all faults that shall be detected Minimum operating current for the transformer protection in RET 316 RET...

Page 682: ...aximum fault current will occur for three phase faults or single phase to ground faults The current for a single phase to ground fault will exceed the current for a three phase fault when the zero sequence impedance in the total fault loop is less than the positive sequence impedance When calculating the current transformer requirements the maximum fault current should be used and therefore both f...

Page 683: ...osses of secondary windings Pr rated ct burden IN nominal current related to the protected object and 2 the dependence of the curves of fig 1 and 2 where for fault currents 3 IN the CT s should not saturate 0 2 4 6 8 10 12 14 16 0 3 4 6 8 10 12 14 16 18 20 with 50 remanence without remanence IK IN n Figure 1 Transformer with 2 windings 0 5 10 15 20 25 30 35 0 3 4 6 8 10 12 14 16 18 20 with 50 rema...

Page 684: ......

Page 685: ...l phase angle shift and they can be used without problems if the same type is on both sides of the generator Possibly ABB Switzerland Ltd Utility Auto mation can be contacted for confirmation that the actual type can be used The current transformer ratio should be selected so that the current to the protection is larger than the minimum operating value for all faults that shall be detected Minimum...

Page 686: ... positions Maximum fault current will occur for three phase faults or single phase to ground faults The current for a single phase to ground fault will exceed the current for a three phase fault when the zero sequence impedance in the total fault loop is less than the positive sequence impedance When calculating the current transformer requirements the maximum fault current should be used and ther...

Page 687: ...network PB connected burden at rated current PE ct losses of secondary windings Pr rated ct burden IN nominal current related to the protected object and 2 the dependence of the curves of fig 1 where for fault currents 3 IN the CT s should not saturate respectively the exact boundary is at b Ö3 b setting value of the characteristic 0 1 2 3 4 5 6 7 8 9 10 0 3 4 6 8 10 12 14 with 50 remanence withou...

Page 688: ......

Page 689: ...nel 4 event list 9 15 9 6 6 Channel 4 analogue input 9 15 9 6 7 Binary input signals 9 15 9 6 8 IBB input signals 9 16 9 6 9 Binary output signals 9 17 9 6 10 Tripping signals 9 17 9 6 11 LED signals 9 17 9 6 12 IBB output signals 9 18 9 6 13 IBB output signal event masks 9 19 9 6 14 Binary input event masks 9 21 9 6 15 Hardware 35 9 22 9 6 16 Channel 8 system I O s 34 9 23 9 6 17 IBB I O 43 9 25 ...

Page 690: ...3 9 6 43 Autoreclosure 38 9 64 9 6 44 EarthFaultIsol 40 9 68 9 6 45 Voltage Bal 41 9 69 9 6 46 U f Inv 47 9 70 9 6 47 UIfPQ 48 9 72 9 6 48 SynchroCheck 49 9 73 9 6 49 Rotor EFP 51 9 76 9 6 50 Stator EFP 52 9 78 9 6 51 I0 Invers 53 9 80 9 6 52 Pole Slip 55 9 81 9 6 53 Diff Line 56 9 83 9 6 54 RemoteBin 57 9 86 9 6 55 EarthFltGnd2 58 9 87 9 6 56 FUPLA 59 9 89 9 6 57 FlatterRecog 60 9 90 9 6 58 HV di...

Page 691: ...l system An electrical to optical converter Type 316BM61b is plugged onto the rear of the protection to convert the electrical RS232 signals from the 316VC61a or 316VC61b into optical signals g448308 Fig 9 1 Electrical to optical converter Type 316BM61b RS232 interface Pin 2 Rx Pin 3 Tx Pin 4 12 V Pin 5 0 V Pin 9 12 V ...

Page 692: ...erminalÛ ÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛ ÛÚMain MenuÄÄÄÄÄÄÄÄÄÄÄ Û Û ÚEditorÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ Û Û ÉEdit Hardware FunctionsÍÍÍÍÍÍÍ Û Û º º Û Û º Edit Relay Configuration º Û Û º Edit Analog CT VT Channels º Û Û º Edit Binary Inputs º Û Û º Edit Trip Outputs º Û Û º Edit Signal Outputs º Û Û º Edit Analogue Inputs º Û Û º Edit Analogue Inputs º Û Û...

Page 693: ...ÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛ Fig 9 3 IBB configuration Caution The settings for the LON interbay bus are to be found in publication 1MRB520225 Uen for the MVB interbay bus in 1MRB520270 Uen and for the MVB process bus in 1MRB520192 Uen ÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛ ÛABB Switzerland LtdÛÛÛÛÛÛÛÛÛÛÛÛExampleÛÛÛÛÛÛÛÛÛÛÛÛÛREG316 4 Generator TerminalÛ ÛÛÛÛÛÛÛÛÛÛÛÛ...

Page 694: ...ewhat longer Read Distr Data This parameter defines what has access to the disturbance re corder data by IBB The disturbance recorder data can be read via the interbay bus SCS by SMS The disturbance recorder data can be read by the SMS Disturbance recorder data can always be read by the HMI re gardless of the setting Note that this parameter has no influence in the versions for the SPA and IEC6087...

Page 695: ...ÛÛÛÛÛÛÛÛÛV6 2b V6 2bÛ ÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛ Fig 9 5 Connecting an IBB measurement ÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛ ÛABB Switzerland LtdÛÛÛÛÛÛÛÛÛÛÛÛExampleÛÛÛÛÛÛÛÛÛÛÛÛÛREG316 4 Generator TerminalÛ ÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛÛ ÛÉEdit Function ...

Page 696: ...anted that events be transmitted to the control room Receiving Indicates that valid SPA telegrams have been received Initialising Indicates that the device is being initialised The following parameters determine the access rights of the re mote HMI and can only be configured on the local HMI see Section 5 12 RemoteMMC on off Enables or disables the remote HMI TimeSync on off Enables or disables sy...

Page 697: ...iods that have to be transferred per channel Assuming the 12 points of a period de viate by less than the specified compression factor from the cor responding points of the preceding period the points themselves are not transferred but simply the number of repeats in relation to the preceding period For example if a record consists of 100 periods all the same then only the 12 points of one period ...

Page 698: ...lly incremented by one every time a line is transferred until there are no lines left The pointer is set to 1 at the com mencement of data transfer WM28 n Read RM30 returns the number of the line that was transferred last M31 Write NAK Read RM31 transfers the line indicated by the pointer V16 Write WV16 1 WV16 0 deletes the oldest record Read RV16 returns the status of the disturbance re corder 0 ...

Page 699: ...ed to assign an address to the device as defined in the station control system The device also responds to data with the address 900 which is used to synchronise all the devices in an SPA bus loop simultaneously Possible operations are Read data from the device R and write data in the device W The channel number identifies the active functions All channel numbers from 0 to 13 are reserved for syst...

Page 700: ...mbers in the above table correspond to the HMI numbers The measured variable of the first function current in a device with the slave address 2 is read as follows 2R14V1 The SPA bus syntax is defined in SPA BUS COMMUNICATION PROTOCOL V2 x 34 SPACOM EN1C 9 5 1 Masking events Once all those binary inputs IBB output signals and system and protection function events which are not to be recorded as eve...

Page 701: ...ents masked 0 Bit mask active 2 All events masked V115 R Time telegram counter V116 R Date telegram counter V120 R Restart counter 0 V200 R W SPA address 2 2 255 V201 R W Baud rate 9600 4800 9600 19200 F R Module Type REC316 REG316 REL316 RET316 S0 R Number of functions 0 1 60 S1 R Function type number S1 S60 S100 R W Parameter set switch 1 1 4 T R W Time D R W Date and time L R Read event B R Rea...

Page 702: ...verflow V155 256 9 6 3 Channel 1 event list Event No Cause Event mask Enable code 1E11 AD error V155 1 1E31 Bus failure V155 256 1E41 Supply failure V155 4096 9 6 4 Channel 3 event list Event No Cause Event mask Enable code 3E1 CPU OK V155 1 3E2 CPU failure V155 2 3E3 CPU RAM failure V155 4 3E4 CPU ROM failure V155 8 3E11 EA62 OK V155 16 3E12 EA62 failure V155 32 3E13 EA62 RAM failure V155 64 3E14...

Page 703: ...alogue outputs via the distributed input output unit 500AXM11 The numerical range is 32768 32767 16 Bit integers The data can be entered in decimal or 4 digit hexadecimal for mat The data remains intact in the event of a supply failure Real values are converted to integers integer real 100 Input format nnn mm FFFFH Data point number O1 O64 9 6 7 Binary input signals The significance of the events ...

Page 704: ...160 126 I1 I32 6 161 192 71 I1 I32 7 193 224 72 I1 I32 8 225 256 73 I1 I32 9 257 288 74 I1 I32 10 289 320 75 I1 I32 11 321 352 76 I1 I32 12 353 384 77 I1 I32 13 385 416 78 I1 I32 14 417 448 79 I1 I32 15 449 480 80 I1 I32 16 481 512 81 I1 I32 17 513 544 82 I1 I32 18 545 576 83 I1 I32 19 577 608 84 I1 I32 20 609 640 85 I1 I32 21 641 672 86 I1 I32 22 673 704 87 I1 I32 23 705 736 88 I1 I32 24 737 768 ...

Page 705: ...s Channel Outputs Events Slot 101 O1 O16 None 1 102 O1 O16 None 2 103 O1 O16 None 3 104 O1 O16 None 4 9 6 10 Tripping signals Channel Outputs Events Slot 101 M1 M16 None 1 102 M1 M16 None 2 103 M1 M16 None 3 104 M1 M16 None 4 9 6 11 LED signals Channel Outputs Events 120 O1 O16 None ...

Page 706: ...E1 E64 126 O1 O32 6 126E1 E64 71 O1 O32 7 71E1 E64 72 O1 O32 8 72E1 E64 73 O1 O32 9 73E1 E64 74 O1 O32 10 74E1 E64 75 O1 O32 11 75E1 E64 76 O1 O32 12 76E1 E64 77 O1 O32 13 77E1 E64 78 O1 O32 14 78E1 E64 79 O1 O32 15 79E1 E64 80 O1 O32 16 80E1 E64 81 O1 O32 17 81E1 E64 82 O1 O32 18 82E1 E64 83 O1 O32 19 83E1 E64 84 O1 O32 20 84E1 E64 85 O1 O32 21 85E1 E64 86 O1 O32 22 86E1 E64 87 O1 O32 23 87E1 E64...

Page 707: ...5 32 O4 On 7 V155 64 Off 8 V155 128 O5 On 9 V155 256 Off 10 V155 512 O6 On 11 V155 1024 Off 12 V155 2048 O7 On 13 V155 4096 Off 14 V155 8192 O8 On 15 V155 16384 Off 16 V155 32768 O9 On 17 V156 1 Off 18 V156 2 O10 On 19 V156 4 Off 20 V156 8 O11 On 21 V156 16 Off 22 V156 32 O12 On 23 V156 64 Off 24 V156 128 O13 On 25 V156 256 Off 26 V156 512 O14 On 27 V156 1024 Off 28 V156 2048 O15 On 29 V156 4096 O...

Page 708: ... V157 16 Off 38 V157 32 O20 On 39 V157 64 Off 40 V157 128 O21 On 41 V157 256 Off 42 V157 512 O22 On 43 V157 1024 Off 44 V157 2048 O23 On 45 V157 4096 Off 46 V157 8192 O24 On 47 V157 16348 Off 48 V157 32768 O25 On 49 V158 1 Off 50 V158 2 O26 On 51 V158 4 Off 52 V158 8 O27 On 53 V158 16 Off 54 V158 32 O28 On 55 V158 64 Off 56 V158 128 O29 On 57 V158 256 Off 58 V158 512 O30 On 59 V158 1024 Off 60 V15...

Page 709: ...el Event Event No Mask Enable code I1 On E1 V155 1 Off E2 V155 2 I2 On E3 V155 4 Off E4 V155 8 I3 On E5 V155 16 Off E6 V155 32 I4 On E7 V155 64 Off E8 V155 128 I5 On E9 V155 256 Off E10 V155 512 I6 On E11 V155 1024 Off E12 V155 2048 I7 On E13 V155 4096 Off E14 V155 8192 I8 On E15 V155 16384 Off E16 V155 32768 I9 On E17 V156 1 Off E18 V156 2 I10 On E19 V156 4 Off E20 V156 8 I11 On E21 V156 16 Off E...

Page 710: ...92 I16 On E31 V156 16384 Off E32 V156 32768 In the case of a double signal the significance of the events changes as shown in the following example where the inputs 2 and 3 are configured as double signal Input Event No Significance Significance at double signal E3 on 1 0 I2 E4 off 0 1 E5 on 0 0 I3 E6 off 1 1 9 6 15 Hardware 35 Summary of parameters Address Access Text Unit Default Min Max Step 1S...

Page 711: ...elect on 0 1 1 off 0 on 1 8S3 R TimeFromPC Select on 0 1 1 off 0 on 1 Event list Event No Cause Event mask Enable code 8E1 GenTrip Set V155 1 8E2 Ditto Reset V155 2 8E3 GenStart Set V155 4 8E4 Ditto Reset V155 8 8E5 Test active Set V155 16 8E6 Ditto Reset V155 32 8E7 InjTstOP Set V155 64 8E8 Ditto Reset V155 128 8E9 Relay Ready Set V155 256 8E10 Ditto Reset V155 512 8E11 ParSet1 Set V155 1024 8E12...

Page 712: ... 8E23 QuitStatus Set V156 64 8E24 Ditto Reset V156 128 8E25 MVB_PB_Warn Set V156 256 8E26 Ditto Reset V156 512 8E27 MVB_PB_Crash Set V156 1024 8E28 Ditto Reset V156 2048 8E29 PB_BA1Ready Set V156 4096 8E30 Ditto Reset V156 8192 8E31 PB_BA2Ready Set V156 16384 8E32 Ditto Reset V156 32768 8E33 PB_BA3Ready Set V157 1 8E34 Ditto Reset V157 2 8E35 PB_BA4Ready Set V157 4 8E36 Ditto Reset V157 8 8E37 PB ...

Page 713: ... Set V155 4 9E4 Ditto Reset V155 8 9E5 PrDatBlckSig Set V155 16 9E6 Ditto Reset V155 32 Measured variables Function 9 IBB I O makes measured variables available the number and significance of which depend on the FUPLA con figuration The number of measured variables is limited to 64 Address Access Text Format 9V1 R IBBMW 1 Longinteger 9Vn R IBBMW n Longinteger 9V64 R IBBMW 64 Longinteger ...

Page 714: ...9 R Delay s 00 01 0 00 60 00 0 01 14S10 R I Setting IN 04 00 0 1 20 0 1 14S11 R f min Hz 040 0 2 50 1 14S12 R MaxMin Select MAX 1 1 2 MIN 1 MAX 1 14S13 R NrOfPhases 001 1 3 2 Measured variables Address Access Text Dec 14V1 R IN 2 Tripping levels Address Access Text Dec 14Q1 R IN 2 Event list Event No Cause Event mask Enable code Status 14E1 Trip Set V155 1 14I1 14E2 Ditto Reset V155 2 14E3 Start S...

Page 715: ...01 00 0 02 60 00 0 01 14S10 R I Setting IN 02 00 0 02 20 00 0 01 14S11 R MaxMin Select MAX 1ph 3 5 2 MIN 3ph 3 MIN 1ph 1 MAX 1ph 1 MAX 3ph 3 Max Inrush 5 14S12 R NrOfPhases 001 1 3 2 Measured variables Address Access Text Dec 14V1 R IN 3 Tripping levels Address Access Text Dec 14Q1 R IN 3 Event list Event No Cause Event mask Enable code Status 14E1 Trip Set V155 1 14I1 14E2 Ditto Reset V155 2 14E3...

Page 716: ...0B 00011110B 14S5 R TRIP 00000000B 14S9 R g IN 0 20 0 10 0 50 0 10 14S10 R v 0 50 0 25 0 50 0 25 14S11 R b 1 1 50 1 25 5 00 0 25 14S12 R g High IN 2 00 0 50 2 50 0 25 14S13 R I Inst IN 10 3 15 1 14S14 R a1 1 00 0 05 2 20 0 01 14S15 R s1 Select Y 0 1 1 Y 0 D 1 14S16 R a2 1 00 0 05 2 20 0 01 14S17 R s2 Select y0 00 21 1 y0 0 y1 1 y5 2 y6 3 y7 4 y11 5 d0 6 d1 7 d5 8 d6 9 d7 10 d11 11 z0 12 z1 13 z2 1...

Page 717: ...ccess Text Unit Default Min Max Step z4 15 z5 16 z6 17 z7 18 z8 19 z10 20 z11 21 14S18 R a3 1 00 0 05 2 20 0 01 14S19 R s3 Select y0 00 21 1 y0 0 y1 1 y5 2 y6 3 y7 4 y11 5 d0 6 d1 7 d5 8 d6 9 d7 10 d11 11 z0 12 z1 13 z2 14 z4 15 z5 16 z6 17 z7 18 z8 19 z10 20 z11 21 ...

Page 718: ...R IN Id T 2 14V6 R IN IhR 2 Tripping levels Address Access Text Dec 14Q1 R IN Id R 2 14Q2 R IN Id S 2 14Q3 R IN Id T 2 Event list Event No Cause Event mask Enable code Status 14E1 Trip Set V155 1 14I1 14E2 Ditto Reset V155 2 14E3 Trip R Set V155 4 14I2 14E4 Ditto Reset V155 8 14E5 Trip S Set V155 16 14I3 14E6 Ditto Reset V155 32 14E7 Trip T Set V155 64 14I4 14E8 Ditto Reset V155 128 14E9 Inrush Se...

Page 719: ...10B 14S5 R TRIP 00000000B 14S9 R Delay s 00 50 0 20 60 00 0 01 14S10 R Z Setting UN IN 0 250 0 025 2 500 0 001 14S11 R NrOfPhases 001 1 3 1 Measured variables Address Access Text Dec 14V1 R UN IN 3 Tripping levels Address Access Text Dec 14Q1 R UN IN 3 Event list Event No Cause Event mask Enable code Status 14E1 Trip Set V155 1 14I1 14E2 Ditto Reset V155 2 14E3 Start Set V155 4 14I2 14E4 Ditto Res...

Page 720: ...01 14S10 R XA Setting UN IN 2 00 5 00 00 00 0 01 14S11 R XB Setting UN IN 0 50 2 50 2 50 0 01 14S12 R NrOfPhases 001 1 3 1 14S13 R Angle deg 000 180 180 005 14S14 R MaxMin Select MIN 1 1 2 MIN 1 MAX 1 Measured variables Address Access Text Dec 14V1 R UN IN 3 Tripping levels Address Access Text Dec 14Q1 R UN IN 3 Event list Event No Cause Event mask Enable code Status 14E1 Trip Set V155 1 14I1 14E2...

Page 721: ...1 00000010B 00011110B 14S5 R TRIP 00000000B 14S9 R Delay s 01 00 0 50 60 0 0 01 14S10 R I2 Setting IN 00 20 0 02 0 50 0 01 Measured variables Address Access Text Dec 14V1 R IN 3 Tripping levels Address Access Text Dec 14Q1 R IN 3 Event list Event No Cause Event mask Enable code Status 14E1 Trip Set V155 1 14I1 14E2 Ditto Reset V155 2 14E3 Start Set V155 4 14I2 14E4 Ditto Reset V155 8 ...

Page 722: ... 60 00 0 10 14S10 R k2 Setting I2 IB 0 05 0 02 0 20 0 01 14S11 R t min s 010 0 1 0 120 0 0 1 14S12 R t max s 1000 500 2000 1 14S13 R t Reset s 0030 5 2000 1 14S14 R IB Setting IN 1 00 0 50 2 50 0 01 Measured variables Address Access Text Dec 14V1 R IN 3 Tripping levels Address Access Text Dec 14Q1 R IN 3 Event list Event No Cause Event mask Enable code Status 14E1 Trip Set V155 1 14I1 14E2 Ditto R...

Page 723: ...lay s 02 00 0 02 60 00 0 01 14S10 R U Setting UN 1 200 0 010 2 000 0 002 14S11 R MaxMin Select MAX 1ph 3 3 2 MIN 3ph 3 MIN 1ph 1 MAX 1ph 1 MAX 3ph 3 14S12 R NrOfPhases 001 1 3 1 Measured variables Address Access Text Dec 14V1 R UN 3 Tripping levels Address Access Text Dec 14Q1 R UN 3 Event list Event No Cause Event mask Enable code Status 14E1 Trip Set V155 1 14I1 14E2 Ditto Reset V155 2 14E3 Star...

Page 724: ...1 00 1 2 00 2 RXIDG 3 14S10 R k1 Setting s 013 50 0 01 200 00 0 01 14S11 R I Start IB 1 10 1 00 2 00 0 01 14S12 R NrOfPhases 1 1 3 2 14S13 R IB Setting IN 1 00 0 20 2 50 0 01 14S14 R t min s 00 00 00 00 10 00 00 10 Measured variables Address Access Text Dec 14V1 R IN 3 Tripping levels Address Access Text Dec 14Q1 R IN 3 Event list Event No Cause Event mask Enable code Status 14E1 Trip Set V155 1 1...

Page 725: ... 00 1 60 0 01 14S11 R t min s 0010 0 1 0 120 0 0 1 14S12 R tg s 0120 0 10 0 2000 0 10 0 14S13 R t max s 0300 0 100 0 2000 0 10 0 14S14 R t Reset s 0120 0 10 0 2000 0 10 0 14S15 R IB Setting IN 1 00 0 50 2 50 0 01 14S16 R NrOfPhases 3 1 3 2 Measured variables Address Access Text Dec 14V1 R IN 3 Tripping levels Address Access Text Dec 14Q1 R IN 3 Event list Event No Cause Event mask Enable code Stat...

Page 726: ...rt IB 1 10 1 00 1 60 0 01 14S11 R t min s 0010 0 1 0 120 0 0 1 14S12 R tg s 0120 0 10 0 2000 0 10 0 14S13 R t max s 0300 0 100 0 2000 0 10 0 14S14 R t Reset s 0120 0 10 0 2000 0 10 0 14S15 R IB Setting IN 1 00 0 50 2 50 0 01 Measured variables Address Access Text Dec 14V1 R IN 3 Tripping levels Address Access Text Dec 14Q1 R IN 3 Event list Event No Cause Event mask Enable code Status 14E1 Trip Se...

Page 727: ...180 0 180 0 5 0 14S11 R Drop Ratio 60 30 170 1 14S12 R Delay s 00 50 0 05 60 00 0 01 14S13 R MaxMin Select MIN 1 1 2 MIN 1 MAX 1 14S14 R Phi Comp deg 0 0 5 0 5 0 0 1 14S15 R NrOfPhases 001 1 3 1 14S16 R PN UN IN 1 000 0 500 2 500 0 001 Measured variables Address Access Text Dec 14V1 R PN 3 Tripping levels Address Access Text Dec 14Q1 R PN 3 Event list Event No Cause Event mask Enable code Status 1...

Page 728: ...ay s 01 00 0 5 60 00 0 01 14S10 R Strom IN 02 00 0 5 20 0 1 14S11 R Hold Voltage UN 00 70 0 4 1 1 0 01 14S12 R Hold Time s 01 00 0 1 10 0 02 14S13 R NrOfPhases 001 1 3 2 Measured variables Address Access Text Dec 14V1 R IN 3 14V2 R UN 3 Tripping levels Address Access Text Dec 14Q1 R IN 3 Event list Event No Cause Event mask Enable code Status 14E1 Trip Set V155 1 14I1 14E2 Ditto Reset V155 2 14E3 ...

Page 729: ...0B 14S5 R TRIP 00000000B 14S9 R Trip Delay s 01 00 0 00 300 00 0 01 14S10 R Reset Delay s 00 01 0 00 300 00 0 01 14S11 R Integration 0 1 0 0 1 1 Measured variables Address Access Text Dec 14V1 R s 3 Tripping levels Address Access Text Dec 14Q1 R s 3 Event list Event No Cause Event mask Enable code Status 14E1 Trip Set V155 1 14I1 14E2 Ditto Reset V155 2 14E3 Start Set V155 4 14I2 14E4 Ditto Reset ...

Page 730: ...v Setting 0 25 0 25 0 50 0 25 Measured variables Address Access Text Dec 14V1 R IN Id R 2 14V2 R IN Id S 2 14V3 R IN Id T 2 Tripping levels Address Access Text Dec 14Q1 R IN Id R 2 14Q2 R IN Id S 2 14Q3 R IN Id T 2 Event list Event No Cause Event mask Enable code Status 14E1 Trip R Set V155 1 14I1 14E2 Ditto Reset V155 2 14E3 Trip S Set V155 4 14I2 14E4 Ditto Reset V155 8 14E5 Trip T Set V155 16 1...

Page 731: ...00 300 0 01 14S11 R RR 1 W ph 000 00 300 300 0 01 14S12 R RRE 1 W ph 000 00 300 300 0 01 14S13 R k0 1 1 001 00 0 8 0 01 14S14 R k0Ang 1 deg 000 00 180 90 0 01 14S15 R Delay 1 s 000 000 0 10 0 001 14S16 R X 2 W ph 000 00 300 300 0 01 14S17 R R 2 W ph 000 00 300 300 0 01 14S18 R RR 2 W ph 000 00 300 300 0 01 14S19 R RRE 2 W ph 000 00 300 300 0 01 14S20 R k0 2 1 001 00 0 8 0 01 14S21 R k0Ang 2 deg 00...

Page 732: ... OR deg 000 00 180 90 0 01 14S36 R Delay 4 OR s 000 00 0 10 0 01 14S37 R X BACK W ph 000 00 300 0 0 01 14S38 R R BACK W ph 000 00 300 0 0 01 14S39 R RR BACK W ph 000 00 300 0 0 01 14S40 R RRE BACK W ph 000 00 300 0 0 01 14S41 R StartMode Select I 2 6 2 UZ 4 OC 6 14S42 R PhasSelMode Select solid ground 0 8 1 Solid ground 0 RTS R cycl 1 TRS T cycl 2 RTS acycl 3 RST acycl 4 TSR acycl 5 TRS acycl 6 SR...

Page 733: ...01 14S50 R 3I0min IN 000 20 0 1 2 0 01 14S51 R U0 VTSup UN 000 20 0 01 0 5 0 01 14S52 R I0 VTSup IN 000 07 0 01 0 5 0 01 14S53 R U2 VTSup UN 000 20 0 01 0 5 0 01 14S54 R I2 VTSup IN 000 07 0 01 0 5 0 01 14S55 R Istart IN 004 00 0 5 10 0 01 14S56 R XA W ph 000 0 0 999 0 1 14S57 R XB W ph 000 0 999 0 0 1 14S58 R RA W ph 000 0 0 999 0 1 14S59 R RB W ph 000 0 999 0 0 1 14S60 R RLoad W ph 000 0 0 999 0...

Page 734: ...00 00 0 2 0 01 15S5 R I OC BU IN 000 00 0 10 0 01 15S6 R Del OC BU s 005 00 0 10 0 01 15S7 R GndFaultMode Select I0 0 3 1 I0 0 I0 OR U0 1 I0 AND U0 2 Blocked 3 15S9 R Dir Def Select Non dir 1 2 1 Non dir 1 Fwards 2 15S10 R TripMode Select 1PhTrip 1 3 1 1PhTrip 1 3PhTrip 2 3PhTripDel3 3 15S11 R SOFT10sec Select off 0 1 1 off 0 on 1 15S12 R t1EvolFaults s 003 00 0 10 0 01 15S13 R ZExtension Select o...

Page 735: ... t1TransBl s 000 05 0 0 25 0 01 15S20 R t2TransBl s 003 00 0 10 0 01 15S21 R t1Block s 000 04 0 0 25 0 01 15S22 R tPSblock s 000 00 0 10 0 01 15S23 R VTSupBlkDel Select off 0 1 1 off 0 on 1 15S24 R VTSupDebDel Select off 0 1 1 off 0 on 1 15S25 R TIMER_1 ms 0 0 30000 1 15S26 R TIMER_2 ms 0 0 30000 1 15S27 R TIMER_3 ms 0 0 30000 1 15S28 R TIMER_4 ms 0 0 30000 1 15S29 R TIMER_5 ms 0 0 30000 1 15S30 R...

Page 736: ...Z SE 2 14V6 14V7 R Z TE 2 14V8 14V9 R Z RS 2 14V10 14V11 R Z ST 2 14V12 14V13 R Z TR 2 Tripping levels Address Access Text Dec 14Q1 R Ref Length 2 14Q2 14Q3 R Z RE 2 14Q4 14Q5 R Z SE 2 14Q6 14Q7 R Z TE 2 14Q8 14Q9 R Z RS 2 14Q10 14Q11 R Z ST 2 14Q12 14Q13 R Z TR 2 Note A tripping value will only be overwritten e g Z RS if the same loop RS trips again ...

Page 737: ...p CB R Set V155 1024 14I6 14E12 Ditto Reset V155 2048 14E13 Trip CB S Set V155 4096 14I7 14E14 Ditto Reset V155 8192 14E15 Trip CB T Set V155 16384 14I8 14E16 Ditto Reset V155 32768 14E17 Trip SOFT Set V156 1 14I9 14E18 Ditto Reset V156 2 14E19 Start O C Set V156 4 14I10 14E20 Ditto Reset V156 8 14E21 Meas Main Set V156 16 14I11 14E22 Ditto Reset V156 32 14E23 Trip CB Set V156 64 14I12 14E24 Ditto...

Page 738: ...tto Reset V157 512 14E43 Start Z Set V157 1024 14I22 14E44 Ditto Reset V157 2048 14E45 Delay 2 Set V157 4096 14I23 14E46 Ditto Reset V157 8192 14E47 Delay 3 Set V157 16384 14I24 14E48 Ditto Reset V157 32768 14E49 Delay 4 Set V158 1 14I25 14E50 Ditto Reset V158 2 14E51 Delay Def Set V158 4 14I26 14E52 Ditto Reset V158 8 14E53 Start RST Set V158 16 14I27 14E54 Ditto Reset V158 32 14E55 Weak infeed S...

Page 739: ...024 15I6 15E12 Ditto Reset V155 2048 15E13 VTSup Delay Set V155 4096 15I7 15E14 Ditto Reset V155 8192 15E15 Start R Aux Set V155 16384 15I8 15E16 Ditto Reset V155 32768 15E17 Start S Aux Set V156 1 15I9 15E18 Ditto Reset V156 2 15E19 Start T Aux Set V156 4 15I10 15E20 Ditto Reset V156 8 15E21 Start E Aux Set V156 16 15I11 15E22 Ditto Reset V156 32 15E23 Start RST Aux Set V156 64 15I12 15E24 Ditto ...

Page 740: ... BOOL_OUT3 Set V157 16 15I19 15E38 Ditto Reset V157 32 15E39 BOOL_OUT4 Set V157 64 15I20 15E40 Ditto Reset V157 128 15E41 BOOL_OUT5 Set V157 256 15I21 15E42 Ditto Reset V157 512 15E43 BOOL_OUT6 Set V157 1024 15I22 15E44 Ditto Reset V157 2048 15E45 BOOL_OUT7 Set V157 4095 15I23 15E46 Ditto Reset V157 8192 15E47 BOOL_OUT8 Set V157 16384 15I24 15E48 Ditto Reset V157 32768 15E49 Start 1ph Set V158 1 1...

Page 741: ...00 65 00 0 01 14S10 R U Block UN 0 20 0 20 0 80 0 10 14S11 R Delay s 01 00 0 10 60 00 0 01 14S12 R MaxMin Select MIN 1 1 2 MIN 1 MAX 1 Measured variables Address Access Text Dec 14V1 R Hz 3 14V2 R UN 2 Tripping levels Address Access Text Dec 14Q1 R Hz 3 Event list Event No Cause Event mask Enable code Status 14E1 Block U Set V155 1 14I1 14E2 Ditto Reset V155 2 14E3 Trip Set V155 4 14I2 14E4 Ditto ...

Page 742: ...RIP 00000000B 14S9 R Delay s 01 00 0 10 60 00 0 01 14S10 R U f Setting UN fN 01 20 0 20 2 00 0 01 14S11 R MaxMin Select MAX 1 1 2 MIN 1 MAX 1 Measured variables Address Access Text Dec 14V1 R UN fN 2 14V2 R Hz 2 Tripping levels Address Access Text Dec 14Q1 R UN fN 2 Event list Event No Cause Event mask Enable code Status 14E1 Trip Set V155 1 14I1 14E2 Ditto Reset V155 2 14E3 Start Set V155 4 14I2 ...

Page 743: ...110B 14S5 R TRIP 00000000B 14S9 R CountThresh 1 1 100 1 14S10 R Drop time s 00 04 00 01 30 00 00 01 14S11 R Reset Delay s 010 0 000 1 300 0 000 1 Measured variables Address Access Text Dec 14V1 R 0 Tripping levels Address Access Text Dec 14Q1 R 0 Event list Event No Cause Event mask Enable code Status 14E1 Trip Set V155 1 14I1 14E2 Ditto Reset V155 2 14E3 Start Set V155 4 14I2 14E4 Ditto Reset V15...

Page 744: ...5 050 200 001 14S11 R Theta Trip 110 050 200 001 14S12 R NrOfPhases 1 1 3 2 14S13 R TimeConstant min 005 0 002 0 500 0 000 1 14S14 R IB Setting IN 1 00 0 50 2 50 0 01 Measured variables Address Access Text Dec 14V1 R Theta Nom 3 14V2 R Pv Nom 3 14V3 R IN 3 Tripping levels Address Access Text Dec 14Q1 R Theta Nom 3 14Q2 R Pv Nom 3 14Q3 R IN 3 Event list Event No Cause Event mask Enable code Status ...

Page 745: ... 1 Select P1 00000010B 00011110B 14S5 R TRIP 00000000B 14S9 R I Setting IN 0 20 0 05 1 00 0 05 14S10 R Delay s 10 0 0 1 60 0 0 1 14S11 R CT Compens 1 00 2 00 2 00 0 01 Measured variables Address Access Text Dec 14V1 R IN 3 Tripping levels Address Access Text Dec 14Q1 R IN 3 Event list Event No Cause Event mask Enable code Status 14E1 Trip Set V155 1 14I1 14E2 Ditto Reset V155 2 ...

Page 746: ... 1 Select P1 00000010B 00011110B 14S5 R TRIP 00000000B 14S9 R U Setting UN 0 20 0 05 1 20 0 05 14S10 R Delay s 10 0 0 1 60 0 0 1 14S11 R VT Compens 1 00 2 00 2 00 0 01 Measured variables Address Access Text Dec 14V1 R UN 3 Tripping levels Address Access Text Dec 14Q1 R UN 3 Event list Event No Cause Event mask Enable code Status 14E1 Trip Set V155 1 14I1 14E2 Ditto Reset V155 2 ...

Page 747: ...y of parameters Address Access Text Unit Default Min Max Step 14S4 R ParSet4 1 Select P1 00000010B 00011110B 14S5 R TRIP 00000000B 14S9 R Logic Mode Select OR 0 2 1 OR 0 AND 1 RS Flipflop 2 Event list Event No Cause Event mask Enable code Status 14E1 BinOutput Set V155 1 14I1 14E2 Ditto Reset V155 2 ...

Page 748: ... 14S11 R Event ms 100 100 3000 50 14S12 R postEvent ms 40 40 400 20 14S13 R recMode Select A 0 1 1 A 0 B 1 14S14 R TrigMode Select TrigOnStart 0 5 1 TrigOnStart 0 TrigOnTrip 1 TrigOnBin 2 TrigAnyBi 3 TrigStart Bi 4 TrigTrip Bin 5 14S15 R BinInp 1 Select No trig 0 2 1 No trig 0 Trigger 1 Inv Trigger 2 14S16 R BinInp 2 Select No trig 0 2 1 No trig 0 Trigger 1 Inv Trigger 2 14S17 R BinInp 3 Select No...

Page 749: ...np 6 Select No trig 0 2 1 No trig 0 Trigger 1 Inv Trigger 2 14S21 R BinInp 7 Select No trig 0 2 1 No trig 0 Trigger 1 Inv Trigger 2 14S22 R BinInp 8 Select No trig 0 2 1 No trig 0 Trigger 1 Inv Trigger 2 14S23 R BinInp 9 Select No trig 0 2 1 No trig 0 Trigger 1 Inv Trigger 2 14S24 R BinInp 10 Select No trig 0 2 1 No trig 0 Trigger 1 Inv Trigger 2 14S25 R BinInp 11 Select No trig 0 2 1 No trig 0 Tr...

Page 750: ...S28 R BinInp 14 Select No trig 0 2 1 No trig 0 Trigger 1 Inv Trigger 2 14S29 R BinInp 15 Select No trig 0 2 1 No trig 0 Trigger 1 Inv Trigger 2 14S30 R BinInp 16 Select No trig 0 2 1 No trig 0 Trigger 1 Inv Trigger 2 14S31 R StorageMode Select StopOnFull 0 1 1 StopOnFull 0 Overwrite 1 Event list Event No Cause Event mask Enable code Status 14E1 Bin output Set V155 1 14I1 14E2 Ditto Reset V155 2 14...

Page 751: ... R Delay s 00 01 0 00 60 00 0 01 14S10 R U Setting UN 1 40 0 01 2 00 0 01 14S11 R f min Hz 040 0 25 50 1 14S12 R MaxMin Select MAX 1 1 2 MIN 1 MAX 1 14S13 R NrOfPhases 001 1 3 2 Measured variables Address Access Text Dec 14V1 R UN 2 Tripping levels Address Access Text Dec 14Q1 R UN 2 Event list Event No Cause Event mask Enable code Status 14E1 Trip Set V155 1 14I1 14E2 Ditto Reset V155 2 14E3 Star...

Page 752: ...0000000B 14S6 R CB2 close 00000000B 14S9 R 1 AR Mode Select 1 1P3P 1P3P 1 5 1 1 1P 1P 1 1 1P 3P 2 1 1P3P 3P 3 1 1P3P 1P3P 4 ExtSelection 5 14S10 R 2 4AR Mode Select off 0 3 1 off 0 2 AR 1 3 AR 2 4 AR 3 14S11 R Master Mode Select off 0 1 1 off 0 on 1 14S12 R ZE Prefault Select on 0 1 1 off 0 on 1 14S13 R ZE 1 AR Select off 0 1 1 off 0 on 1 14S14 R ZE 2 AR Select off 0 1 1 off 0 on 1 14S15 R ZE 3 AR...

Page 753: ...00 0 05 300 0 01 14S24 R t Dead4 s 060 00 0 05 300 0 01 14S25 R t Oper s 000 50 0 05 300 0 01 14S26 R t Inhibit s 005 00 0 05 300 0 01 14S27 R t Close s 000 25 0 05 300 0 01 14S28 R t Discrim 1P s 000 60 0 10 300 0 01 14S29 R t Discrim 3P s 000 30 0 10 300 0 01 14S30 R t Timeout s 001 00 0 05 300 0 01 14S31 R t AR Block s 005 00 0 05 300 0 01 14S32 R TMSEC_Timer1 ms 0 0 30000 1 14S33 R TMSEC_Timer...

Page 754: ...wr Set V155 1024 14I6 14E12 Ditto Reset V155 2048 14E13 Blk to Flwr Set V155 4096 14I7 14E14 Ditto Reset V155 8192 14E15 Inhibit Outp Set V155 16384 14I8 14E16 Ditto Reset V155 32768 14E17 AR Ready Set V156 1 14I9 14E18 Ditto Reset V156 2 14E19 AR Blocked Set V156 4 14I10 14E20 Ditto Reset V156 8 14E21 AR in Prog Set V156 16 14I11 14E22 Ditto Reset V156 32 14E23 First AR 1P Set V156 64 14I12 14E24...

Page 755: ...E35 P_OUTPUT2 Set V157 4 14I18 14E36 Ditto Reset V157 8 14E37 P_OUTPUT3 Set V157 16 14I19 14E38 Ditto Reset V157 32 14E39 P_OUTPUT4 Set V157 64 14I20 14E40 Ditto Reset V157 128 14E41 P_OUTPUT5 Set V157 256 1421 14E42 Ditto Reset V157 512 14E43 P_OUTPUT6 Set V157 1024 1422 14E44 Ditto Reset V157 2048 14E45 P_OUTPUT7 Set V157 4096 1423 14E46 Ditto Reset V157 8192 14E47 P_OUTPUT8 Set V157 16384 14I24...

Page 756: ... 0 100 0 001 14S10 R Angle deg 000 00 180 00 180 00 0 01 14S11 R Drop Ratio 60 30 95 1 14S12 R Delay s 00 50 0 05 60 00 0 01 14S13 R Phi Comp deg 0 00 5 00 5 00 0 01 14S14 R PN UN IN 1 000 0 500 2 500 0 001 Measured variables Address Access Text Dec 14V1 R PN 3 Tripping levels Address Access Text Dec 14Q1 R PN 3 Event list Event No Cause Event mask Enable code Status 14E1 Trip Set V155 1 14I1 14E2...

Page 757: ... R t Reset s 1 50 0 10 2 00 0 01 14S12 R NrOfPhases 003 1 3 2 Measured variables Address Access Text Dec 14V1 R UN Ud 1 2 14V2 R UN Ud 2 2 14V3 R UN Ud 3 2 Tripping levels Address Access Text Dec 14Q1 R UN Ud 1 2 14Q2 R UN Ud 2 2 14Q3 R UN Ud 3 2 Event list Event No Cause Event mask Enable code Status 14E1 Trip Set V155 1 14I1 14E2 Ditto Reset V155 2 14E3 Start Set V155 4 14I2 14E4 Ditto Reset V15...

Page 758: ... R t V f 1 05 min 70 00 00 01 100 00 0 01 14S14 R t V f 1 10 min 70 00 00 01 100 00 0 01 14S15 R t V f 1 15 min 06 00 00 01 100 00 0 01 14S16 R t V f 1 20 min 01 000 00 001 30 000 0 001 14S17 R t V f 1 25 min 00 480 00 001 30 000 0 001 14S18 R t V f 1 30 min 00 300 00 001 30 000 0 001 14S19 R t V f 1 35 min 00 220 00 001 30 000 0 001 14S20 R t V f 1 40 min 00 170 00 001 30 000 0 001 14S21 R t V f ...

Page 759: ...BB Switzerland Ltd 9 71 Tripping levels Address Access Text Dec 14Q1 R UN fN 2 Event list Event No Cause Event mask Enable code Status 4E1 Trip Set V155 1 14I1 14E2 Ditto Reset V155 2 14E3 Start Set V155 4 14I2 14E4 Ditto Reset V155 8 ...

Page 760: ...ss Text Unit Default Min Max Step 14S4 R ParSet4 1 Select P1 00000010B 00011110B 14S9 R Angle deg 000 0 180 0 180 0 0 1 14S10 R PN UN IN 1 000 0 200 2 500 0 001 14S11 R Voltage mode Select direct 1 2 1 direct 1 ph to ph 2 Measured variables Address Access Text Dec 14V1 R UN 3 14V2 R IN 3 14V3 R P PN 3 14V4 R Q PN 3 14V5 R Hz 3 ...

Page 761: ...4S10 R maxPhaseDif deg 10 0 05 0 80 0 05 0 14S11 R maxFreqDif Hz 0 20 0 05 0 40 0 05 14S12 R minVoltage UN 0 70 0 60 1 00 0 05 14S13 R maxVoltage UN 0 30 0 10 1 00 0 05 14S14 R Operat Mode Select SynChck only 0 4 1 SynChck only 0 DBus LLine 1 LBus DLine 2 DBus DLine 3 DBus DLine 4 14S15 R SupervisTime s 0 20 0 05 5 00 0 05 14S16 R t Reset s 0 05 0 00 1 00 0 05 14S17 R LiveBus Select 1ph R S 0 7 1 ...

Page 762: ...R S 0 1ph S T 1 1ph T R 2 1ph R E 3 1ph S E 4 1ph T E 5 3ph delta 6 3ph Y 7 Measured variables Address Access Text Dec 14V1 R UN dU 2 14V2 R deg dPhi 2 14V3 R Hz df 2 14V4 R UN max bus V 2 14V5 R UN min bus V 2 14V6 R UN max line V 2 14V7 R UN min line V 2 Tripping levels Address Access Text Dec 14Q1 R UN dU 2 14Q2 R deg dPhi 2 14Q3 R Hz df 2 ...

Page 763: ...4 14E8 Ditto Reset V155 128 14E9 SyncOverrid Set V155 256 14I5 14E10 Ditto Reset V155 512 14E11 AmplDifOK Set V155 1024 14I6 14E12 Ditto Reset V155 2048 14E13 PhaseDifOK Set V155 4096 14I7 14E14 Ditto Reset V155 8192 14E15 FreqDifOK Set V155 16384 14I8 14E16 Ditto Reset V155 32768 14E17 LiveBus Set V156 1 14I9 14E18 Ditto Reset V156 2 14E19 DeadBus Set V156 4 14I10 14E20 Ditto Reset V156 8 14E21 L...

Page 764: ...elay s 0 50 0 20 60 00 0 05 14S11 R RFr AlarmVal kOhm 10 0 0 1 25 0 0 1 14S12 R RFr TripVal kOhm 01 0 0 1 25 0 0 1 14S13 R REr kOhm 1 00 0 90 5 00 0 01 14S14 R Uir Select 50 Volt 1 3 1 20 Volt 1 30 Volt 2 50 Volt 3 14S15 R RFr Adjust kOhm 10 00 8 00 12 00 0 01 14S16 R CoupC Adjust uF 4 00 2 00 10 00 0 01 Measured variables Address Access Text Dec 14V1 R Rfr kOhm 1 14V2 R Ck uF 2 14V3 R REr kOhm 2 ...

Page 765: ...14E5 Alarm Set V155 16 14I3 14E6 Ditto Reset V155 32 14E7 Start Alarm Set V155 64 14I4 14E8 Ditto Reset V155 128 14E9 InterruptInt Set V155 256 14I5 14E10 Ditto Reset V155 512 14E11 InterruptExt Set V155 1024 14I6 14E12 Ditto Reset V155 2048 14E13 Rer Adjust Set V155 4096 14I7 14E14 Ditto Reset V155 8192 14E15 CoupC Adjust Set V155 16384 14I8 14E16 Ditto Reset V155 32768 14E17 Extern Block Set V15...

Page 766: ...20 60 00 0 05 14S11 R RFs AlarmVal kOhm 10 0 0 1 20 0 0 1 14S12 R RFs TripVal kOhm 01 0 0 1 20 0 0 1 14S13 R REs kOhm 1 00 0 70 5 00 0 01 14S14 R REs 2 Starpt kOhm 1 00 0 90 30 00 0 01 14S15 R RFs Adjust kOhm 10 00 8 00 12 00 0 01 14S16 R MTransRatio 100 0 10 0 200 0 0 1 14S17 R NrOfStarpt 1 1 2 1 Measured variables Address Access Text Dec 14V1 R Rfs kOhm 1 14V2 R Inst trans ratio 1 14V3 R REs kOh...

Page 767: ...itto Reset V155 32 14E7 Start Alarm Set V155 64 14I4 14E8 Ditto Reset V155 128 14E9 InterruptInt Set V155 256 14I5 14E10 Ditto Reset V155 512 14E11 InterruptExt Set V155 1024 14I6 14E12 Ditto Reset V155 2048 14E13 2 Starpt Set V155 4096 14I7 14E14 Ditto Reset V155 8192 14E15 MTR Adjust Set V155 16384 14I8 14E16 Ditto Reset V155 32768 14E17 Res Adjust Set V156 1 14I9 14E18 Ditto Reset V156 2 14E19 ...

Page 768: ...00 1 2 00 2 RXIDG 3 14S10 R k1 Setting s 013 50 0 01 200 00 0 01 14S11 R I Start IB 1 10 1 00 2 00 0 01 14S12 R NrOfPhases 1 1 3 2 14S13 R IB Setting IN 1 00 0 20 2 50 0 01 14S14 R t min s 00 00 00 00 10 00 00 10 Measured variables Address Access Text Dec 14V1 R IN 3 Tripping levels Address Access Text Dec 14Q1 R IN 3 Event list Event No Cause Event mask Enable code Status 14E1 Trip Set V155 1 14I...

Page 769: ...4S9 R ZA UN IN 0 00 0 000 5 000 0 001 14S10 R ZB UN IN 0 00 5 000 0 000 0 001 14S11 R ZC UN IN 0 00 0 000 5 000 0 001 14S12 R Phi deg 090 60 270 1 14S13 R WarnAngle deg 000 0 180 1 14S14 R TripAngle deg 090 0 180 1 14S15 R n1 01 0 20 1 14S16 R n2 01 0 20 1 14S17 R t Reset s 5 000 0 500 25 000 0 010 Measured variables Address Access Text Dec 14V1 R UN IN 3 14V2 R Hz 2 Tripping levels Address Access...

Page 770: ...to Reset V155 2 14E3 Generator Set V155 4 14I2 14E4 Ditto Reset V155 8 14E5 Motor Set V155 16 14I3 14E6 Ditto Reset V155 32 14E7 Zone1 Set V155 64 14I4 14E8 Ditto Reset V155 128 14E9 Zone2 Set V155 256 14I5 14E10 Ditto Reset V155 512 14E11 Trip1 Set V155 1024 14I6 14E12 Ditto Reset V155 2048 14E13 Trip2 Set V155 4096 14I7 14E14 Ditto Reset V155 8192 ...

Page 771: ... 00000010B 00011110B 14S5 R TRIP 00000000B 14S9 R g IN 0 20 0 10 0 50 0 10 14S10 R v 0 50 0 25 0 50 0 25 14S11 R b 1 1 50 1 25 5 00 0 25 14S12 R g High IN 2 00 0 50 2 50 0 25 14S13 R I Inst IN 10 3 15 1 14S14 R a1 1 00 0 05 2 20 0 01 14S15 R s1 Select D 0 1 1 Y 0 D 1 14S16 R a2 1 00 0 05 2 20 0 01 14S17 R s2 Select d0 00 21 1 y0 0 y1 1 y5 2 y6 3 y7 4 y11 5 d0 6 d1 7 d5 8 d6 9 d7 10 d11 11 ...

Page 772: ...7 18 z8 19 z10 20 z11 21 14S18 R InrushRatio 10 6 20 1 14S19 R InrushTime s 0 0 90 1 Measured variables Address Access Text Dec Address Access Text Dec 14V1 R IN Id R 2 14V4 R IN IhR 2 14V2 R IN Id S 2 14V5 R IN IhS 2 14V3 R IN Id T 2 14V6 R IN IhT 2 Tripping levels Address Access Text Dec 14Q1 R IN Id R 2 14Q2 R IN Id S 2 14Q3 R IN Id T 2 ...

Page 773: ...ip Set V155 1 14I1 14E2 Ditto Reset V155 2 14E3 Trip R Set V155 4 14I2 14E4 Ditto Reset V155 8 14E5 Trip S Set V155 16 14I3 14E6 Ditto Reset V155 32 14E7 Trip T Set V155 64 14I4 14E8 Ditto Reset V155 128 14E9 Inrush Set V155 256 14I5 14E10 Ditto Reset V155 512 14E11 Stabil Set V155 1024 14I6 14E12 Ditto Reset V155 2048 ...

Page 774: ...k Enable code Status 14E1 RemChan 1 Set V155 1 14I1 14E2 Ditto Reset V155 2 14E3 RemChan 2 Set V155 4 14I2 14E4 Ditto Reset V155 8 14E5 RemChan 3 Set V155 16 14I3 14E6 Ditto Reset V155 32 14E7 RemChan 4 Set V155 64 14I4 14E8 Ditto Reset V155 128 14E9 RemChan 5 Set V155 256 14I5 14E10 Ditto Reset V155 512 14E11 RemChan 6 Set V155 1024 14I6 14E12 Ditto Reset V155 2048 14E13 RemChan 7 Set V155 4096 1...

Page 775: ...0 R I Setting IN 0 10 0 10 1 00 0 01 14S11 R Angle deg 60 0 0 0 90 0 5 0 14S12 R tBasic s 0 050 0 000 1 000 0 001 14S13 R tWait s 0 050 0 000 0 500 0 001 14S14 R tTransBl s 0 100 0 000 0 500 0 001 14S15 R CT Neutral Select Lineside 0 1 1 Lineside 0 Busside 1 14S16 R ComMode Select Permissive 0 1 1 Permissive 0 Blocking 1 14S17 R SendMode Select MeasBwd 0 1 1 Non dir 0 MeasBwd 1 14S18 R 1 Channel S...

Page 776: ...ls Q Event list Event No Cause Event mask Enable code Status 14E1 Trip Set V155 1 14I1 14E2 Ditto Reset V155 2 14E3 Start Set V155 4 14I2 14E4 Ditto Reset V155 8 14E5 MeasFwd Set V155 16 14I3 14E6 Ditto Reset V155 32 14E7 MeasBwd Set V155 64 14I4 14E8 Ditto Reset V155 128 14E9 Senden Set V155 256 14I5 14E10 Ditto Reset V155 512 14E11 Recve Inh Set V155 1024 14I6 14E12 Ditto Reset V155 2048 ...

Page 777: ...rder of the FUPLA measured variables measured variable numbers can be deter mined by assigning numbers to them Address Access Text Dec 14V1 R FUPMV 1 2 14V2 R FUPMV 2 2 14Vn R FUPMV n 2 Events FUPLA events can only be configured as IBB events Events are not recorded under the FUPLA function number Because of the variable number of signals events FUPLA would require a vari able number of channels I...

Page 778: ...ask Enable code Status 14E1 InputStatus1 Set V155 1 14I1 14E2 Ditto Reset V155 2 14E3 InputStatus2 Set V155 4 14I3 14E4 Ditto Reset V155 8 14E5 InputStatus3 Set V155 16 14I5 14E6 Ditto Reset V155 32 14E7 InputStatus4 Set V155 64 14I7 14E8 Ditto Reset V155 128 14E9 FlatterSig1 Set V155 256 14I2 14E10 Ditto Reset V155 1024 14E11 FlatterSig2 Set V155 512 14I4 14E12 Ditto Reset V155 2048 14E13 Flatter...

Page 779: ...00 00 300 300 0 01 14S11 R RR 1 W ph 000 00 300 300 14S12 R RRE 1 W ph 000 00 300 300 14S13 R k0 1 1 001 00 0 8 0 01 14S14 R k0Ang 1 deg 000 00 180 90 0 01 14S15 R Delay 1 s 000 000 0 10 0 001 14S16 R X 2 W ph 000 00 300 300 0 01 14S17 R R 2 W ph 000 00 300 300 0 01 14S18 R RR 2 W ph 000 00 300 300 0 01 14S19 R RRE 2 W ph 000 00 300 300 0 01 14S20 R k0 2 1 001 00 0 8 0 01 14S21 R k0Ang 2 deg 000 0...

Page 780: ... 0 01 14S36 R Delay 4 OR s 000 00 0 10 0 01 14S37 R X BACK W ph 000 00 300 0 0 01 14S38 R R BACK W ph 000 00 300 0 0 01 14S39 R RR BACK W ph 000 00 300 0 0 01 14S40 R RRE BACK W ph 000 00 300 0 0 01 14S41 R PhasSelMode Select Non dir 9 10 1 Non dir 9 Fward OR 10 14S42 R ComMode Select off 0 5 1 off 0 PUTT Nondir 1 PUTT Fward 2 PUTT OR2 3 POTT 4 BLOCK OR 5 14S43 R VTSupMode Select off 0 4 1 off 0 I...

Page 781: ...0 01 14S54 R XA W ph 000 0 0 999 0 1 14S55 R XB W ph 000 0 999 0 0 1 14S56 R RA W ph 000 0 0 999 0 1 14S57 R RB W ph 000 0 999 0 0 1 14S58 R RLoad W ph 000 0 0 999 0 1 14S59 R AngleLoad deg 045 0 0 90 0 1 14S60 R SR error deg 0 00 2 00 2 00 0 01 14S61 R TR error deg 0 00 2 00 2 00 0 01 14S62 R Delay Def s 002 00 0 10 0 01 14S63 R UminFault UN 000 05 0 01 2 0 01 14S64 R MemDirMode Select Trip 0 2 1...

Page 782: ...0 I2 OR U0 7 15S9 R Dir Def Select Non dir 1 2 1 Non dir 1 Fwards 2 15S10 R TripMode Select 1PhTrip 1 3 1 1PhTrip 1 3PhTrip 2 3PhTripDel3 3 15S11 R SOFT 10sec Select off 0 1 1 off 0 on 1 15S12 R t1EvolFaults s 003 00 0 10 0 01 15S14 R Weak Select off 0 1 1 off 0 on 1 15S15 R Unblock Select off 0 1 1 off 0 on 1 15S16 R Echo Select off 0 1 1 off 0 on 1 15S17 R TransBl Select off 0 1 1 off 0 on 1 15S...

Page 783: ... s 000 00 0 10 0 01 15S22 R VTSupBlkDel Select off 0 1 1 off 0 on 1 15S23 R VTSupDebDel Select off 0 1 1 off 0 on 1 15S24 R TIMER_1 ms 0 0 30000 1 15S25 R TIMER_2 ms 0 0 30000 1 15S26 R TIMER_3 ms 0 0 30000 1 15S27 R TIMER_4 ms 0 0 30000 1 15S28 R TIMER_5 ms 0 0 30000 1 15S29 R TIMER_6 ms 0 0 30000 1 15S30 R TIMER_7 ms 0 0 30000 1 15S31 R TIMER_8 ms 0 0 30000 1 15S32 R I Load IN 0 5 0 2 0 1 ...

Page 784: ...Z SE 2 14V6 14V7 R Z TE 2 14V8 14V9 R Z RS 2 14V10 14V11 R Z ST 2 14V12 14V13 R Z TR 2 Tripping levels Address Access Text Dec 14Q1 R Ref Length 2 14Q2 14Q3 R Z RE 2 14Q4 14Q5 R Z SE 2 14Q6 14Q7 R Z TE 2 14Q8 14Q9 R Z RS 2 14Q10 14Q11 R Z ST 2 14Q12 14Q13 R Z TR 2 Note A tripping value will only be overwritten e g Z RS if the same loop RS trips again ...

Page 785: ...p CB R Set V155 1024 14I6 14E12 Ditto Reset V155 2048 14E13 Trip CB S Set V155 4096 14I7 14E14 Ditto Reset V155 8192 14E15 Trip CB T Set V155 16384 14I8 14E16 Ditto Reset V155 32768 14E17 Trip SOFT Set V156 1 14I9 14E18 Ditto Reset V156 2 14E19 Start O C Set V156 4 14I10 14E20 Ditto Reset V156 8 14E21 Meas Main Set V156 16 14I11 14E22 Ditto Reset V156 32 14E23 Trip CB Set V156 64 14I12 14E24 Ditto...

Page 786: ...elay 2 Set V157 256 14I21 14E42 Ditto Reset V157 512 14E43 Delay 3 Set V157 1024 14I22 14E44 Ditto Reset V157 2048 14E45 Delay 4 Set V157 4096 14I23 14E46 Ditto Reset V157 8192 14E47 Delay Def Set V157 16384 14I24 14E48 Ditto Reset V157 32768 14E49 Start RST Set V158 1 14I25 14E50 Ditto Reset V158 2 14E51 Weak Set V158 4 14I26 14E52 Ditto Reset V158 8 14E53 Meas Bward Set V158 16 14I27 14E54 Ditto...

Page 787: ...155 256 15I5 15E10 Ditto Reset V155 512 15E11 Start R Aux Set V155 1024 15I6 15E12 Ditto Reset V155 2048 15E13 Start S Aux Set V155 4096 15I7 15E14 Ditto Reset V155 8192 15E15 Start T Aux Set V155 16384 15I8 15E16 Ditto Reset V155 32768 15E17 Start E Aux Set V156 1 15I9 15E18 Ditto Reset V156 2 15E19 Start RST Aux Set V156 4 15I10 15E20 Ditto Reset V156 8 15E21 Trip RST Aux Set V156 16 15I11 15E22...

Page 788: ...7 15E34 Ditto Reset V157 2 15E35 BOOL_OUT4 Set V157 4 15I18 15E36 Ditto Reset V157 8 15E37 BOOL_OUT5 Set V157 16 15I19 15E38 Ditto Reset V157 32 15E39 BOOL_OUT6 Set V157 64 15I20 15E40 Ditto Reset V157 128 15E41 BOOL_OUT7 Set V157 256 15I21 15E42 Ditto Reset V157 512 15E43 BOOL_OUT8 Set V157 1024 15I22 15E44 Ditto Reset V157 2048 15E45 Start 1ph Set V157 4096 15I23 15E46 Ditto Reset V157 8192 15E4...

Page 789: ...x Step 14S4 R ParSet4 1 Select P1 00000010B 00011110B 14S5 R TRIP 00000000B Event list Event No Cause Event mask Enable code Status 14E1 BinOutput1 Set V155 1 14I1 14E2 Ditto Reset V155 2 14E3 BinOutput2 Set V155 4 14I2 14E4 Ditto Reset V155 8 14E5 BinOutput3 Set V155 16 14I3 14E6 Ditto Reset V155 32 14E7 BinOutput4 Set V155 64 14I4 14E8 Ditto Reset V155 128 ...

Page 790: ...R SupervisTime4 ms 1 1 10000 1 14S13 R SupervisTime5 ms 1 1 10000 1 14S14 R SupervisTime6 ms 1 1 10000 1 14S15 R SupervisTime7 ms 1 1 10000 1 14S16 R SupervisTime8 ms 1 1 10000 1 14S17 R SupervisTime9 ms 1 1 10000 1 14S18 R SupervisTime10 ms 1 1 10000 1 14S19 R SupervisTime11 ms 1 1 10000 1 14S20 R SupervisTime12 ms 1 1 10000 1 14S21 R SupervisTime13 ms 1 1 10000 1 14S22 R SupervisTime14 ms 1 1 10...

Page 791: ...s 1 0 10 0 10 0 0 1 14S10 R Frequency Hz 48 00 00 00 65 00 0 01 14S11 R BlockVoltage UN 0 2 0 2 0 8 0 1 14S12 R Delay s 00 10 0 10 60 00 0 01 Measured variables Address Access Text Dec 14V1 R Hz s 2 14V2 R Hz 3 14V3 R UN 2 Tripping levels Address Access Text Dec 14Q1 R Hz s 2 4Q2 R Hz 3 Event list Event No Cause Event mask Enable code Status 14E1 Blocked U Set V155 1 14I1 14E2 Ditto Reset V155 2 1...

Page 792: ...000B 14S9 R I Setting IN 2 00 0 20 20 00 0 01 14S10 R Angle deg 45 180 180 15 14S11 R Delay s 01 00 0 02 60 00 0 01 14S12 R tWait s 0 20 0 02 20 00 0 01 14S13 R MemDirMode Select Trip 0 1 1 Trip 0 Block 1 14S14 R MemDuration s 2 00 0 20 60 00 0 01 Measured variables Address Access Text Dec 14V1 R IN R 3 14V2 R IN S 3 14V3 R IN T 3 14V4 R PN IR UST 3 14V5 R PN IS UTR 3 14V6 R PN IT URS 3 14V7 R UN ...

Page 793: ...ent list Event No Cause Event mask Enable code Status 14E1 Trip Set V155 1 14I1 14E2 Ditto Reset V155 2 14E3 Start Set V155 4 14I2 14E4 Ditto Reset V155 8 14E5 Start R Set V155 16 14I3 14E6 Ditto Reset V155 32 14E7 Start S Set V155 64 14I4 14E8 Ditto Reset V155 128 14E9 Start T Set V155 256 14I5 14E10 Ditto Reset V155 512 14E11 MeasFwd Set V155 1024 14I6 14E12 Ditto Reset V155 2048 14E13 MeasBwd S...

Page 794: ...80 15 14S11 R c Setting Select 1 00 0 2 1 0 02 0 1 00 1 2 00 2 14S12 R k1 Setting s 13 50 0 01 200 00 0 01 14S13 R t min s 0 00 0 00 10 00 0 01 14S14 R IB Setting IN 1 00 0 04 2 50 0 01 14S15 R tWait s 0 20 0 02 20 00 0 01 14S16 R MemDirMode Select Trip 0 1 1 Trip 0 Block 1 14S17 R MemDuration s 2 00 0 20 60 00 0 01 Measured variables Address Access Text Dec 14V1 R IN R 3 14V2 R IN S 3 14V3 R IN T...

Page 795: ...ent list Event No Cause Event mask Enable code Status 14E1 Trip Set V155 1 14I1 14E2 Ditto Reset V155 2 14E3 Start Set V155 4 14I2 14E4 Ditto Reset V155 8 14E5 Start R Set V155 16 14I3 14E6 Ditto Reset V155 32 14E7 Start S Set V155 64 14I4 14E8 Ditto Reset V155 128 14E9 Start T Set V155 256 14I5 14E10 Ditto Reset V155 512 14E11 MeasFwd Set V155 1024 14I6 14E12 Ditto Reset V155 2048 14E13 MeasBwd S...

Page 796: ...P 00000000B 14S29 R 23135 RED TRIP L1 00000000B 14S33 R 23140 RED TRIP L2 00000000B 14S37 R 23145 RED TRIP L3 00000000B 14S41 R 23150 EFS REM TRIP 00000000B 14S45 R 23155 EFS BUS TRIP 00000000B 14S49 R I Setting IN 1 20 0 2 5 0 01 14S50 R Delay t1 s 0 15 0 02 60 0 01 14S51 R Delay t2 s 0 15 0 02 60 0 01 14S52 R Delay tEFP s 0 04 0 02 60 0 01 14S53 R t Drop Retrip s 0 05 0 02 60 0 01 14S54 R t Drop...

Page 797: ...1 3 2 Event list Event No Cause Event mask Enable code Status 14E1 23305 Trip t1 Set V155 1 14I1 14E2 Ditto Reset V155 2 14E3 23315 Trip t1 L1 Set V155 4 14I2 14E4 Ditto Reset V155 8 14E5 23320 Trip t1 L2 Set V155 16 14I3 14E6 Ditto Reset V155 32 14E7 23325 Trip t1 L3 Set V155 64 14I4 14E8 Ditto Reset V155 128 14E9 23310 Trip t2 Set V155 256 14I5 14E10 Ditto Reset V155 512 14E11 23340 Remote trip ...

Page 798: ... V156 4 14I10 14E20 Ditto Reset V156 8 14E21 23370 EFP Bus Trip Set V156 16 14I11 14E22 Ditto Reset V156 32 14E23 23330 Retrip t1 Set V156 64 14I12 14E24 Ditto Reset V156 128 14E25 23360 Uncon Trip t1 Set V156 256 14I13 14E26 Ditto Reset V156 512 14E27 23380 Ext Trip t1 Set V156 1024 14I14 14E28 Ditto Reset V156 2048 14E29 23335 Backup Trip t2 Set V156 4096 14I15 14E30 Ditto Reset V156 8192 14E31 ...

Page 799: ...1110B 14S9 R PN UN IN Ö3 1 000 0 200 2 500 0 001 14S10 R AngleComp Deg 0 000 180 0 180 0 0 1 14S11 R t1 Interval Select 0 8 1 min 0 2 min 1 5 min 2 10 min 3 15 min 4 20 min 5 30 min 6 60 min 7 120 min 8 14S12 R ScaleFact1 1 1 0000 0 0001 1 0000 0 0001 14S13 R t2 Interval Select 4 0 8 1 min 0 2 min 1 5 min 2 10 min 3 15 min 4 20 min 5 30 min 6 60 min 7 120 min 8 14S14 R ScaleFact2 1 1 0000 0 0001 1...

Page 800: ...4V5 R US UN 3 14V6 R UT UN 3 14V7 R IR IN 3 14V8 R IS IN 3 14V9 R IT IN 3 14V10 R P PN 3 14V11 R Q PN 3 14V12 R cos phi 3 14V13 R Hz 3 14V14 R E1Int 3 14V15 R P1Int 0 14V16 R E1Acc 3 14V17 R P1Acc 0 14V18 R E2Int 3 14V19 R P2Int 0 14V20 R E2Acc 3 14V21 R P2Acc 0 Tripping levels Address Access Text Dec 14Q16 R E1Acc 3 14Q17 R P1Acc 0 14Q20 R E2Acc 3 14Q21 R P2Acc 0 ...

Page 801: ...4 1MRB520049 Uen Rev E ABB Switzerland Ltd 9 113 Event list Event No Cause Event mask Enable code Status 14E1 Cnt1New Set V155 1 14I1 14E2 Ditto Reset V155 2 14E3 Cnt2New Set V155 4 14I2 14E4 Ditto Reset V155 8 ...

Page 802: ......

Page 803: ...elation to Version 5 1a 10 4 10 5 1 Min Reactance function 10 4 10 6 Changes in Version 5 1c in relation to Version 5 1b 10 4 10 6 1 Year 2000 conformity 10 4 10 7 Changes in Version 5 2 in relation to Version 5 1c 10 5 10 7 1 Frequency rate of change protection 10 5 10 7 2 Touch screen or SMS in parallel with the SCS connection 10 5 10 8 Changes in Version 5 2a in relation to Version 5 2 10 5 10 ...

Page 804: ...049 Uen Rev G 10 2 10 10 3 Measurement module 10 6 10 10 4 Commands via a Stage 2 LON bus 10 6 10 11 Changes in Version 6 3 in relation to Version 6 2 10 6 10 11 1 A D converter unit 316EA63 10 6 10 11 2 Updating the 316EA63 firmware 10 7 ...

Page 805: ... a device not equipped with a local control and display unit can be determined using the HMI diagnostic function Upon selecting Show diagnostic data one of the lines displayed is HW No which in the case of 316VC61a includes the code 0434 HW Nr xxxx 0434 xx The computing capacity of the 316VC61a is 250 compared with 200 in the case of 316VC61 10 2 Known software weaknesses in V5 0 10 2 1 Year 2000 ...

Page 806: ...DEW version for which the synchroni sation of the time will not function via the VDEW bus in the year 2000 all Version V5 1 devices are fully immune to the year 2000 problem 10 3 3 LDU events function The LDU events function is also now available when the HMI is operating off line 10 4 Changes in Version 5 1a in relation to Version 5 1 10 4 1 I0 Invers function The I0 Invers is always enabled rega...

Page 807: ...of change protection df dt V5 2a of the HMI shows the df dt function for all software keys for which the Frequency function has been enabled 10 9 Changes in Version 6 0 in relation to Version 5 2 a 10 9 1 Directional overcurrent functions DirCurrentDT and DirCurrentInv Two directional overcurrent functions DirCurrentDT with definite time and DirCurrentInv with inverse time characteristic have been...

Page 808: ...acilitates the supervision of the input signals of the analogue input output unit 500AXM11 Refer to the Operating Instructions for the distributed input output system RIO580 Publication 1MRB520192 Uen for further details 10 10 3 Measurement module The MeasureModule function has been added to the function block library It is available for all software keys and facilitates the three phase measuremen...

Page 809: ...cessary this is done in a similar fashion as updating the main processor firmware see Section 7 5 After each update of the main processor firmware the 316EA63 firmware must also be up dated When applying the DOS HMI updating is made by calling up the batch file loadEA63 bat which is listed in the HMI directory When applying the Windows HMC CAP2 316 the item EA63 download in the menu Options must b...

Page 810: ......

Page 811: ...d wide casing N2 bottom 12 4 Fig 12 4 Example of the input transformer connections for a directional protection function DirCurrentDT DirCurrentInv MinReactance Power Pole Slip UIfPQ and MeasureModule 12 5 Fig 12 5 Example of the input transformer connections for the differential protection functions Diff Transf and Diff Gen 12 6 Check list for replacing hardware units Report to be used when repla...

Page 812: ...ABB Switzerland Ltd REG 316 4 1MRB520049 Uen Rev C 12 2 PC HEST 965 034 C REG 316 4 MODURES Digital Generator Protection XS92b Test Set Printer Fig 12 1 Test set up using test set Type XS92b ...

Page 813: ...Fig 12 2 Digital generator protection REG 316 4 front view 1 Green LED stand by 2 LED s belonging to first I O unit 3 LED s belonging to second I O unit 4 Reset button behind frontplate 5 Local display unit LDU with optical serial inter face 6 Marking space ...

Page 814: ...316VC61b 316DB61 316DB62 316DB63 316NG65 316GW61 316EA62 316EA63 316DB61 316DB62 316DB63 316VC61a 316VC61b 316DB61 316DB62 316DB63 316NG65 316DB61 316DB62 316DB63 316DB61 316DB62 316DB63 Fig 12 3 Digital generator protection REG 316 4 showing the location of units rear view in the narrow casing N1 top and wide casing N2 bottom ...

Page 815: ... MinReactance Power Pole Slip UIfPQ and MeasureModule Providing the c t s v t s and input transformers are connected as shown in Fig 12 4 the details concerning direction given in Index 3 apply i e when active power is flowing from the gen erator to the power system the power measured by the power function is positive The star point c t s may also be used dotted connections ...

Page 816: ...mer connections for the differential protection functions Diff Transf and Diff Gen Providing the c t s and input transformers are connected as shown in Fig 12 5 the details given in Sections 3 5 1 Diff Transf and 3 5 2 Diff Gen apply i e the differential current becomes zero for a through fault ...

Page 817: ...y marked Refit the covers on the unit Refit the electrical to optical converter Type 316BM61 OBI or reinsert the PC card Reconnect the ground to the unit if it was removed Reconnect c t and v t circuits Switch on the auxiliary supply Download to the unit the settings previously saved always necessary when replacing the 316VC61 and also any FUPLA logic on the disc Check the operation of the unit e ...

Page 818: ...artment UTAAA P Bruggerstrasse 71a CH 5401 Baden Switzerland Fax 41 58 585 31 30 General data Client Station Feeder RE 316 4 data sticker on unit Type of unit Unit ID Serial No Item Drawing No Revision index Ordering code Software version FW MMC sticker below reset button Module data Old module New module Type of module Revision Module ID Serial No Drawing No Revision index Barcode No Software ver...

Page 819: ... check of external wiring Check of relay grounding Check of supply voltage DC AC Check of settings calculated by Check of C T circuits Check of P T circuits Secondary injection with test set type Check of input signals Check of signalisation alarms Check of starting breaker failure protection Check of tripping Primary tests Final check If non test sets were used note type number calibration date ...

Page 820: ...ut Software version of the relay Secondary injection Channel number Main C T P T ratio AD channel rated value AD channel ref value Injected value Display AD calculated Channels displayed A A kV V A V A V UN IN UN IN 1 2 3 4 5 6 7 8 9 100 200 V or 1 2 5 A respectively Remark If the AD channel reference value is not 1 0 it is advisable to inject rated value ref value to get on the display 1 00 UN IN...

Page 821: ...OC 202 OC 103 OC 203 OC 104 OC 204 OC 105 OC 205 OC 106 OC 206 OC 107 OC 207 OC 108 OC 208 OC 109 OC 209 OC 110 OC 210 OC 111 OC 211 OC 112 OC 212 OC 113 OC 213 OC 114 OC 214 q DB61 q DB62 q DB63 q DB61 q DB62 q DB63 Function Remarks Result Function Remarks Result OC 301 OC 401 OC 302 OC 402 OC 303 OC 403 OC 304 OC 404 OC 305 OC 405 OC 306 OC 406 OC 307 OC 407 OC 308 OC 408 OC 309 OC 409 OC 310 OC...

Page 822: ... Function Remarks Result q DB61 S 101 q DB62 S 102 q DB63 S 103 S 104 S 105 S 106 S 107 S 108 S 109 S 110 q DB61 S 201 q DB62 S 202 q DB63 S 203 S 204 S 205 S 206 S 207 S 208 S 209 S 210 q DB61 S 301 q DB62 S 302 q DB63 S 303 S 304 S 305 S 306 S 307 S 308 S 309 S 310 q DB61 S 401 q DB62 S 402 q DB63 S 403 S 404 S 405 S 406 S 407 S 408 S 409 S 410 ...

Page 823: ...s Function Remarks Result q DB61 C 101 Contact 1 q DB62 C 101 Contact 2 C 102 Contact 1 C 102 Contact 2 q DB61 C 201 Contact 1 q DB62 C 201 Contact 2 C 202 Contact 1 C 202 Contact 2 q DB61 C 301 Contact 1 q DB62 C 301 Contact 2 C 302 Contact 1 C 302 Contact 2 q DB61 C 401 Contact 1 q DB62 C 401 Contact 2 C 402 Contact 1 C 402 Contact 2 ...

Page 824: ......

Page 825: ......

Page 826: ......

Page 827: ......

Page 828: ......

Page 829: ......

Page 830: ......

Page 831: ......

Page 832: ......

Page 833: ......

Page 834: ......

Page 835: ......

Page 836: ......

Page 837: ......

Page 838: ......

Page 839: ......

Page 840: ......

Page 841: ......

Page 842: ......

Page 843: ......

Page 844: ......

Page 845: ......

Page 846: ......

Page 847: ......

Page 848: ......

Page 849: ......

Page 850: ......

Page 851: ......

Page 852: ......

Page 853: ......

Page 854: ......

Page 855: ......

Page 856: ......

Page 857: ......

Page 858: ......

Page 859: ......

Page 860: ......

Page 861: ......

Page 862: ......

Page 863: ......

Page 864: ......

Page 865: ......

Page 866: ......

Page 867: ......

Page 868: ......

Page 869: ......

Page 870: ......

Page 871: ......

Page 872: ......

Page 873: ......

Page 874: ......

Page 875: ......

Page 876: ......

Page 877: ......

Page 878: ......

Page 879: ......

Page 880: ......

Page 881: ......

Page 882: ......

Page 883: ......

Page 884: ......

Page 885: ......

Page 886: ......

Page 887: ......

Page 888: ......

Page 889: ......

Page 890: ......

Page 891: ......

Page 892: ......

Page 893: ......

Page 894: ......

Page 895: ......

Page 896: ......

Page 897: ......

Page 898: ......

Page 899: ......

Page 900: ......

Page 901: ......

Page 902: ......

Page 903: ......

Page 904: ......

Page 905: ......

Page 906: ......

Page 907: ......

Page 908: ......

Page 909: ......

Page 910: ......

Page 911: ......

Page 912: ......

Page 913: ......

Page 914: ......

Page 915: ......

Page 916: ......

Page 917: ......

Page 918: ......

Page 919: ......

Page 920: ......

Page 921: ......

Page 922: ......

Page 923: ......

Page 924: ......

Page 925: ......

Page 926: ......

Page 927: ......

Page 928: ......

Page 929: ......

Page 930: ......

Page 931: ......

Page 932: ......

Page 933: ......

Page 934: ......

Page 935: ......

Page 936: ......

Page 937: ......

Page 938: ......

Page 939: ......

Page 940: ......

Page 941: ......

Page 942: ......

Page 943: ......

Page 944: ......

Page 945: ......

Page 946: ......

Page 947: ......

Page 948: ......

Page 949: ......

Page 950: ......

Page 951: ......

Page 952: ......

Page 953: ......

Page 954: ......

Page 955: ......

Page 956: ......

Page 957: ......

Page 958: ......

Page 959: ......

Page 960: ......

Page 961: ......

Page 962: ......

Page 963: ......

Page 964: ......

Page 965: ......

Page 966: ......

Page 967: ......

Page 968: ......

Page 969: ......

Page 970: ......

Page 971: ......

Page 972: ......

Page 973: ...okumentation UTA BD1 Römerstrasse 29 Gebäude 733 3 CH 5401 Baden Telefax 41 58 585 28 00 Concerns publication 1MRB520049 Uen REG 316 4 V6 3 Have you discovered any mistakes in this publication If so please note here the pages sections etc Do you find the publication readily understandable and logically structured Can you make any suggestions to improve it Is the information sufficient for the purp...

Page 974: ......

Page 975: ...e Please attach a completed form to every unit and forward them to the address below Place of delivery Baden Switzerland ABB Switzerland Ltd Utility Automation Repair Center UTAAA P Warenannahme Terminal CA CH 5401 Baden Equipment data Unit type Serial No In operation since Reason for return tick where applicable Overfunction No function Outside tolerance Abnormal operating temperature Sporadic er...

Page 976: ......

Page 977: ...6 57 e mail SA LEC Support ch abb com Unit REC 316 4 SW Version REC 216 SW Version System REG 316 4 SW Version REG 216 SW Version REL 316 4 SW Version HMI SW Version RET 316 4 SW Version other SW Version XS92a XS92b SW Version Problem Program error unit system Program error HMI PC Error in manual Suggestion for improvement other Can the error be reproduced at will yes no Particulars of hardware an...

Page 978: ...ontinuation ___________________________________________________________________ ACTION internal use of ABB Switzerland Ltd Dept UTASS only Received by Date Answered by Date Problem solved yes no Week Name Position Consequence ...

Page 979: ... instances in which these instructions provide no or insufficient information In addition to these instructions any applicable local regulations and safety procedures must always be strictly observed both when connecting up and commissioning this equipment Any work such as insertion or removal of soldered jumpers or setting resistors which may be necessary may only be per formed by appropriately q...

Page 980: ...tility Automation Brown Boveri Strasse 6 CH 5400 Baden Switzerland Telefon 41 58 585 77 44 Telefax 41 58 585 55 77 e mail substation automation ch abb com www abb com substationautomation Printed in Switzerland 0207 0000 0 ...

Reviews: