background image

PC-45X(E2)

Page5

Texmate, Inc. Tel. (760) 598-9899

THEORY AND APPLICATION OF LIQUID CRYSTAL DISPLAYS

ELECTRICAL CHARACTERISTICS

 - Electrically, liquid crystal displays 

function like capacitors and, unlike LED's, are driven with an AC signal.  

This AC signal is necessary to maintain the electric field required to rotate 

the liquid crystal molecules.  The LCD drive circuitry used for Texmate 

displays puts out a 60Hz square wave signal which is truly symmetrical and 

contains no DC components.  Fig. 3 shows the typical AC drive signal's 

relationship between the common back plane and the individual segment 

elements.  A segment is turned on when its drive signal is 180° out of 

phase with respect to the back plane.  A segment is turned off when  its 

drive signal is in phase with the back plane so that there is no net voltage 

between the back plane and the segment.  Fig. 4 explains operation of he 

internal logic circuitry used to create the AC drive signal described in Fig. 3. 

The field-effect liquid crystal display is the most advanced and reliable 

liquid crystal display available today.  Its operation depends on changing 

the optical properties of the liquid crystal by applying an electric field.  

The effect of this change is in turn, made visible by polarizers placed on 

each side of the display cell.

TEMPERATURE SPECIFICATIONS

 - The extremely pure state-of-the-art 

LC materials used in Texmate displays provide a wide operating tempera-

ture range of -10°C to +60°C and a storage temperature range of -30°C to 

+70°C.  Maintaining the display at temperatures above 70°C for sustained 

periods (days), or above 100°C for shorter times (minutes) can cause 

permanent damage ot the LC material and/or polarizing film.  At the low 

end of the temperature range, there  is no fixed breakdown temperature.  

Instead, the display response time increases as molecular movement is 

slowed down due to the increased viscosity of the LC fluid.  At approximate

-

ly -15 to -20°C the LC compound undergoes first- or second-order phase 

changes and ceases to operate.  Such changes, however, are reversible 

and not damaging.  For example, LCD'S immersed in liquid nitrogen have 

returned to normal operation after a brief warmup period.

CAUTION

 - If a DC component is introduced into the display, electrolysis 

occurs and the transparent conductors which form the individual display 

elements will, in time, be destroyed.  A DC component can be created by 

leakage or inadvertent connection to system ground of unused display 

elements such as decriptors and decimal points.  For this reason it is 

recommended that unused display elements be connected to to the back 

plane output drive pin which is provided on all Texmate LCD meters.  The 

back plane signal will then drive these unused elements to an off condition.  

Short term application of a DC signal will not damage the display and , 

in fact, the display test function in most Texmate meters utilizes a DC 

signal to light up all segments for test purposes.  This function, however, 

is only intended for momentary usage and if left activated for longer than 

24 hours, damage to the display will occur. 

Liquid crystal displays are inherently reliable and thousands of Texmate's 

proprietary, customized LCD displays have been in continuous  use 

throughout the world often in harsh environmental conditions for many 

years.  An understanding of the simple precautions outlined here will 

provide many years of reliable maintenance-free use.

DISPLAY CONSTRUCTION AND OPERATION

 - The best description of 

liquid crystal is that is an ordered fluid of a class called nematic.  Nematic 

fluids of the type used for liquid crystal displays consist of cigar-shaped 

organic molecules with the long axis of each molecule pointing in the same 

direction.  The display cell is constructed from two pieces of glass coated 

on the inner side with transparent indium oxide conductors, as shown 

in Fig.1. Each of the transparent conductors on the inside of the larger 

rear glass piece is shaped to form the individual segments of the display 

and are terminiated on individual contact pads.  The single conductor on 

the inside of the front glass piece is shaped so as to be common to all 

the segments on the rear glass.  Traditionally this common conductor 

is usually referred to as the "back plane".  The common back plane is 

connected to the two left most (viewed from the front) contact pads by a 

small dot of conductive epoxy imbedded in the spacer/seal.  The glass 

surfaces are also specially treated to align the liquid crystal molecules in a 

partiular direction.  Alignment is parallel to the plane of the glass, with the 

alignment direction of the top rotated 90° relative to the alignment of the 

bottom plate.  This causes the cigar-shaped liquid crystal molecules in the 

cell to assume a twisted orientation, when viewed from top to bottom.  As 

shown in Fig. 2, the plane of polarization of polarized light will follow this 

twist and emerge from the cell rotated 90°.  Thus, when the cell is placed 

between crossed polarizers, the polarizers will transmit light.  When an 

electric field is applied to the transparent conductors on the inside of the 

glass cell, the liquid crystal molecules will physically move and reorient 

themselves parallel to the field.  The 90° twist is then destroyed, and that 

portion of the cell between the conductors will appear dark.  Conversely, 

when the cell is placed between parallel polarizers light cannot be trans-

mitted and the entire display will appear dark.  When the electric field is 

then applied the segments formed by the transparent conductors will then 

appear light against a dark ground. 

FIGURE 1.  LCD Cross-Section

FIGURE 2.  LCD Operating Pinciples

FIGURE 4.  Exclusive-Or Drive Circuit

FIGURE 3.  Typical AC Drive Signals

Отзывы: