background image

In this case, in order to decide which values to program on par.
“OFSt” and “rot”, the following formulae must be applied :

“rot” = (D2-D1) / (M2-M1)

“OFSt” = D2 - (“rot” x M2)

where:
M1 =measured value 1

D1 = visualisation value when the instrument measures M1
M2 =measured value 2

D2 = visualisation value when the instrument measures M2
It then follows that the instrument will visualise :

DV = MV x “rot” + “OFSt”

where:  DV = visualised value 

MV= measured value

Example 1: It is desired that the instrument visualises the value
effectively measured at 20° but that, at 200°, it visualises a value

lower than 10° (190°).    
Therefore :  M1=20 ;  D1=20 ;  M2=200 ;  D2=190

“rot” = (190 - 20) / (200 - 20) = 0,944
“OFSt” = 190 - (0,944 x 200) = 1,2
Example 2: It is desired that the instrument visualises 10° whilst the

value actually measured is 0°, but, at 500° it visualises a 50° higher
value (550°).

Therefore :  M1=0 ;  D1=10 ;  M2=500 ;  D2=550
“rot” = (550 - 10) / (500 - 0) = 1,08
“OFSt” = 550 - (1,08 x 500) = 10

By using par.

 “FiL” 

it is possible to

 

program time constant of the  

software filter for the input value measured, in order to reduce

noise sensitivity (increasing the time of reading).
In case of measurement error, the instrument supplies the power
as programmed on par.  

“OPE”.

This power will be calculated according to cycle time programmed
for the PID controller, while for the ON/OFF controllers the cycle

time is automatically considered to be equal to 20 sec. (e.g. In the
event of probe error with ON/OFF control and “OPE”=50, the

control output will be activated for 10 sec., then it will be
deactivated for 10 sec. and so on until the measurement error

remains.).
In the group 

]

PAn”

 the  par. 

“AdE”

 is present that defines the 3

led shift index functioning.

The lighting up of the green led = indicates that the process value
is within the range  [SP1+AdE ... SP1-AdE], the lighting up of the

led – indicates that the process value is lower than [SP1-AdE] and
the lighting up of the led + indicates that the process value is higher

than [SP1+AdE].

4.2 - OUTPUTS CONFIGURATION

The instrument’s outputs can be programmed by entering the group
of parameters 

]

Out

, where the relative parameters  

“O1F” 

and

“O2F” 

(depending on the number of outputs available on the

instrument) are located.
The outputs can be set for the following functions :
- Main control output (1.rEG)

- Secondary control output (2.rEG)
- Alarm output normally open  (ALno)

- Alarm output normally closed  (ALnc)
- Alarm output normally closed with led reverse indication  (ALni)

- Output deactivated (OFF)
The coupling outputs number outputs – number alarms can be
made in the group referring to the alarm to the alarm  (“

]

AL1”).

4.3 - ON/OFF CONTROL (1.rEG)

All the parameters referring to the ON/OFF control are contained in
the group 

]

rEG”.

This type of control can be obtained by programming par.

"Cont"

 =

On.FS or = On.FA  and works on the output programmed as 

1.rEG,

depending on the measure, on the Set Point 

“SP1”

, on the

functioning mode 

"Func” 

and on the hysteresis 

"HSEt

".

The instrument carries out an ON/OFF control with symmetric

hysteresis if “Cont" = On.FS or with asymmetrical hysteresis if
“Cont” = On.FA.

The control works in the following way : in the case of reverse
action, or heating (“FunC”=HEAt), it deactivates the output, when

the process value reaches [SP1 + HSEt] in case of symmetrical

hysteresis, or [SP1] in case of asymmetrical hysteresis and is then
activated again when the process value goes below value [SP1 -

HSEt]. 
Vice versa, in case of direct action or cooling ("Func”=CooL), it

deactivates the output, when the process value reaches [SP1 -
HSEt] in case of symmetrical hysteresis, or [SP1] in case of

asymmetrical hysteresis  and is activated again when the process
value goes above value [SP1 + HSEt].

O U T

S P 1

P V

o ff

O N

H E A t - O n .F A

O U T

t im e

H S E t

S P 1

P V

H S E t

tim e

C o o L  - O n .F A

O N

O N

O N

O N

O N

o ff

o ff

o ff

C o o L  - O n .F S

H E A t - O n .F S

O N

O N

O U T

S P 1

o ff

P V

o ff

O N

H S E t

t im e

O U T

O N

S P 1

P V

O N

o ff

o ff

O N

tim e

H S E t

H S E t

H S E t

1 .rE G

1 .rE G

1 .rE G

1 .rE G

4.4 - NEUTRAL ZONE ON/OFF CONTROL (1.rEG - 2.rEG)

All the parameters referring to Neutral Zone ON/OFF control are
contained in the group 

]

rEG”.

This type of control can be obtained when 2 outputs are
programmed respectively as 1.rEG and 2.rEG and the par. 

“Cont”

= nr .

The Neutral Zone control is used to control plants in which there is
an element which causes a positive increase (ex. Heater,

humidifier, etc.) and an element which causes a negative increase
(ex. Cooler, de-humidifier, etc).

The control functions works on the programmed outputs depending
on the measurement, on the Set Point 

“SP1” 

and on the hysteresis

"HSEt

".

The control works in the following way : it deactivates the outputs

when the process value reaches the Set Point and it activates the
output 1.rEG when the process value goes below value [SP1 -

HSEt], or it activates the output 2.rEG when the process value goes
above [SP1 + HSEt]. 

Consequently, the element causing a positive increase has to be
connected to the output programmed as 1.rEG while the element

causing a negative increase has to be connected to the output
programmed as 2.rEG.

0N

O U T   2.rEG

(cooling)

O U T  1.rE G

(heating)

SP 1

PV

off

0N

off

off

off

0N

tim e

H SEt

H SEt

If 2.rEG output is used to control compressor is possible to use the
“Compressor Protection” function that has the meaning to avoid

compressor “short cycles”.
This function allows a control by time on the output 2.rEG

activation, independently by the temperature control request.
The protection is a “delayed after deactivation” type.

This protection permits to avoid the output activation for a time
programmable on par. “

CPdt

” (expressed in sec.); the output

activation will occurs only after the elapsing of time “CPdt”.

The time programmed on parameter “CPdt” is counted starting from
the last output deactivation.

Obviously, whether during the time delay caused by the
compressor protection function, the regulator request should stop,

the output activation foreseen after time “CPdt” would be erased.
The function is not active programming “CPdt” =OFF.

The led relative to 2.rEG output blinks during the phases of output
activation delay, caused by “Compressor Protection” function.

TECNOLOGIC spa - TLK 48 B

 

- OPERATING INSTRUCTIONS - Vr. 03 - 12/04 - ISTR 06877 - PAG. 4

Содержание TLK 48 B

Страница 1: ...PROGRAMMABLE PARAMETERS TABLE 5 PARAMETERS CONFIGURATION BY KEY01 4 10 ALARM OUTPUT FUNCTIONS 4 9 REACHING OF SET POINT AT CONTROLLED SPEED 4 8 AUTOTUNING FUNCTION 4 7 DOUBLE ACTION PID CONTROL 4 6 SINGLE ACTION PID CONTROL 4 5 NEUTRAL ZONE ON OFF CONTROL 4 4 ON OFF CONTROL 4 3 OUTPUTS CONFIGURATION 4 2 MEASURING AND VISUALIZATION 4 1 FUNCTIONS 4 ELECTRICAL WIRING DIAGRAM 3 4 ELECTRICAL CONNECTION...

Страница 2: ...can contain all the desired parameters see par 2 3 ConF Configuration parameters Menu this contains all the operating parameters and the functioning configuration parameters ATTENTION The instrument is programmed in factory with all the parameters to exception of the Set Point SP1 and the alarm threshold AL1 programmable in the menù ConF to the purpose to prevent wrong accidental programming from ...

Страница 3: ...hermore the input cable of the probe has to be kept separate from line voltage wiring If the input cable of the probe is screened it has to be connected to the ground with only one side We recommend that a check should be made that the parameters are those desired and that the application functions correctly before connecting the outputs to the actuators so as to avoid malfunctioning that may caus...

Страница 4: ...etrical hysteresis if Cont On FA The control works in the following way in the case of reverse action or heating FunC HEAt it deactivates the output when the process value reaches SP1 HSEt in case of symmetrical hysteresis or SP1 in case of asymmetrical hysteresis and is then activated again when the process value goes below value SP1 HSEt Vice versa in case of direct action or cooling Func CooL i...

Страница 5: ...N All the parameters referring to the AUTOTUNING function are contained in the group rEG The AUTO TUNING function FAST or OSCILLATING type permits the calculation of the PID parameters by means of a tuning cycle and at the end of this operation the parameters are stored into the instrument s memory and remain constant during control Both modes calculate the following parameters automatically Pb Pr...

Страница 6: ...am on par OAL1 to which output the alarm signal has to be sent The alarm functioning is instead defined by parameters AL1t ALARM TYPE AL1 ALARM THRESHOLD AL1L LOW ALARM THRESHOLD for band alarm OR MINIMUM SET OF AL1 ALARM THRESHOLD for low or high alarm AL1H HIGH ALARM THRESHOLD for band alarm OR MAXIMUM SET OF AL1 ALARM THRESHOLD for low or high alarm HAL1 ALARM HYSTERESIS AL1d ALARM ACTIVATION D...

Страница 7: ...less to continue 5 if the les results green press the button placed on the device 6 observe the indication led after having pressed the button the led becomes red and therefore at the end of the data transfer it becomes green 7 now it is possible to disconnect the device For additional info please have a look at the KEY01 instruction manual 5 PROGRAMMABLE PARAMETERS TABLE Here following are descri...

Страница 8: ...wer as programmed on par OPE and activates the alarm if the relative parameter AL1i have been programmed yES 6 2 CLEANING We recommend cleaning of the instrument with a slightly wet cloth using water and not abrasive cleaners or solvents which may damage the instrument 6 3 GUARANTEE AND REPAIRS The instrument is under warranty against manufacturing flaws or faulty material that are found within 12...

Страница 9: ...6847 7 5 MEASURING RANGE TABLE 0 1370 C 32 2498 F tc K SEnS CrAl 0 1000 C 32 1832 F tc J SEnS J dP 1 2 3 dP 0 INPUT 2 10 V SEnS 2 10 0 10 V SEnS 0 10 1 5 V SEnS 1 5 0 5 V SEnS 0 5 0 1 V SEnS 0 1 12 60 mV SEnS 12 60 0 60 mV SEnS 0 60 0 50 mV SEnS 0 50 4 20 mA SEnS 4 20 199 9 999 9 19 99 99 99 1 999 9 999 1999 9999 0 20 mA SEnS 0 20 50 0 110 0 C 58 0 230 0 F 50 110 C 58 230 F NTC 103 AT2 SEnS ntc 55...

Отзывы: