
Step 2.
Click on [
Analyze
] in the newly opened window.
Figure 22.
Clicking on [Analyze]
If the importing procedure for the LSTM AI-sensing node is correct, a new report is generated. This
new report shows the architecture of the neural network and the ROM and RAM memory usage.
Neural Network Tools for STM32 v1.4.0 (AI tools v5.2.0)
-- Importing model
-- Importing model - done (elapsed time 0.574s)
-- Rendering model
-- Rendering model - done (elapsed time 0.077s)
Creating report file C:\SPC5Studio-6.0\workspace_AI\SPC58ECxx_RLA AI Car Sensing
Node\components\spc5_ai_component_rla\cfg\sensing_node_network_analyze_report.txt
Exec/report summary (analyze dur=0.65s err=0)
------------------------------------------------------------------------------------------------------------------------
model file : C:\SPC5Studio-6.0\workspace_AI\SPC58ECxx_RLA AI Car Sensing Node\source\model\model_car_sts.h5
type : keras (keras_dump) - tf.keras 2.4.0
c_name : sensing_node_network
compression : None
quantize : None
workspace dir : C:\SPC5Studio-6.0\workspace_AI\SPC58ECxx_RLA AI Car Sensing Node\components\stm32ai_ws
output dir : C:\SPC5Studio-6.0\workspace_AI\SPC58ECxx_RLA AI Car Sensing
Node\components\spc5_ai_component_rla\cfg
model_name : model_car_sts
model_hash : 10794f1c230799b2a1cda67171827db2
input : input_0 [150 items, 600 B, ai_float, FLOAT32, (50, 1, 3)]
inputs (total) : 600 B
output : dense_1_nl [4 items, 16 B, ai_float, FLOAT32, (1, 1, 4)]
outputs (total) : 16 B
params # : 24,428 items (95.42 KiB)
macc : 49,668
weights (ro) : 97,712 B (95.42 KiB)
activations (rw) : 3,136 B (3.06 KiB)
ram (total) : 3,752 B (3.66 KiB) = 3,136 + 600 + 16
------------------------------------------------------------------------------------------------------------------------
id layer (type) output shape param # connected to macc rom
------------------------------------------------------------------------------------------------------------------------
0 input_0 (Input) (50, 1, 3)
conv1d (Conv2D) (48, 1, 16) 160 input_0 7,696 640
conv1d_nl (Nonlinearity) (48, 1, 16) conv1d
------------------------------------------------------------------------------------------------------------------------
1 conv1d_1 (Conv2D) (46, 1, 8) 392 conv1d_nl 18,040 1,568
conv1d_1_nl (Nonlinearity) (46, 1, 8) conv1d_1
------------------------------------------------------------------------------------------------------------------------
3 flatten (Reshape) (368,) conv1d_1_nl
------------------------------------------------------------------------------------------------------------------------
4 dense (Dense) (64,) 23,616 flatten 23,552 94,464
dense_nl (Nonlinearity) (64,) dense 64
------------------------------------------------------------------------------------------------------------------------
5 dense_1 (Dense) (4,) 260 dense_nl 256 1,040
dense_1_nl (Nonlinearity) (4,) dense_1 60
------------------------------------------------------------------------------------------------------------------------
model_car_sts p=24428(95.42 KBytes) macc=49668 rom=95.42 KBytes ram=3.06 KiB io_ram=616 B
Complexity per-layer - macc=49,668 rom=97,712
------------------------------------------------------------------------------------------------------------------------
id layer (type) macc rom
------------------------------------------------------------------------------------------------------------------------
0 conv1d (Conv2D) |||||||||| 15.5% | 0.7%
1 conv1d_1 (Conv2D) ||||||||||||||||||||||| 36.3% | 1.6%
4 dense (Dense) ||||||||||||||||||||||||||||||| 47.4% ||||||||||||||||||||||||||||||| 96.7%
4 dense_nl (Nonlinearity) | 0.1% | 0.0%
5 dense_1 (Dense) | 0.5% | 1.1%
5 dense_1_nl (Nonlinearity) | 0.1% | 0.0%
------------------------------------------------------------------------------------------------------------------------
UM3053
SPC5-STUDIO-AI plugin
UM3053
-
Rev 1
page 20/39