SN8P2740 Series
ADC, OP-amp, Comparator 8-Bit Micro-Controller
SONiX TECHNOLOGY CO., LTD
Page 38
Version 2.0
The power dropping might through the voltage range that
‟s the system dead-band. The dead-band means the power
range
can‟t offer the system minimum operation power requirement. The above diagram is a typical brown out reset
diagram. There is a serious noise under the VDD, and VDD voltage drops very deep. There is a dotted line to separate
the system working area. The above area is the system work well area. The below area is the system work error area
called dead-band. V1 does
n‟t touch the below area and not effect the system operation. But the V2 and V3 is under the
below area and may induce the system error occurrence. Let system under dead-band includes some conditions.
DC application:
The power source of DC application is usually using battery. When low battery condition and MCU drive any loading,
the power drops and keeps in dead-band. Under the situation, the power
won‟t drop deeper and not touch the system
reset voltage. That makes the system under dead-band.
AC application:
In AC power application, the DC power is regulated from AC power source. This kind of power usually couples with AC
noise that makes the DC power dirty. Or the external loading is very heavy, e.g. driving motor. The loading operating
induces noise and overlaps with the DC power. VDD drops by the noise, and the system works under unstable power
situation.
The power on duration and power down duration are longer in AC application. The system power on sequence protects
the power on successful, but the power down situation is like DC low battery condition. When turn off the AC power,
the VDD drops slowly and through the dead-band for a while.
3.5 THE SYSTEM OPERATING VOLTAGE
To improve the brown out reset needs to know the system minimum operating voltage which is depend on the system
executing rate and power level. Different system executing rates have different system minimum operating voltage.
The electrical characteristic section shows the system voltage to executing rate relationship.
Vdd (V)
System Rate (Fcpu)
System Mini.
Operating Voltage.
System Reset
Voltage.
Dead-Band Area
Normal Operating
Area
Reset Area
Normally the system operation voltage area is higher than the system reset voltage to VDD, and the reset voltage is
decided by LVD detect level. The system minimum operating voltage rises when the system executing rate upper even
higher than system reset voltage. The dead-band definition is the system minimum operating voltage above the system
reset voltage.
3.6 LOW VOLTAGE DETECTOR (LVD)
VDD
VSS
System Normal Run
System Stop
LVD Detect Voltage
Power On
Delay Time
Power
System Status
Power is below LVD Detect
Voltage and System Reset.