– 4 –
1-2. CP1 and VF1 CIRCUIT DESCRIPTION
1. Circuit Description
1-1. Digital clamp
The optical black section of the extracts averaged values from
the subsequent data to make the black level of the output
data uniform for each line. The optical black section averaged
value for each line is taken as the sum of the value for the
previous line multiplied by the coefficient k and the value for
the current line multiplied by the coefficient k-1.
1-2. Signal processor
1.
γ
correction circuit
This circuit performs (gamma) correction in order to maintain
a linear relationship between the light input to the camera
and the light output from the picture screen.
2. Color generation circuit
This circuit converts the image sensor into RGB signals.
3. Matrix circuit
This circuit generates the Y signals, R-Y signals and B-Y sig-
nals from the RGB signals.
4. Horizontal and vertical aperture circuit
This circuit is used gemerate the aperture signal.
1-3. AE/AWB and AF computing circuit
The AE/AWB carries out computation based on a 64-segment
screen, and the AF carries out computations based on a 6-
segment screen.
1-4. SDRAM controller
This circuit outputs address, RAS, CAS and CS data for con-
trolling the SDRAM. It also refreshes the SDRAM.
1-5. Communication control
1. SDIO
This is the interface for the 8-bit microprocessor.
1-6. Digital encorder
It generates chroma signal from color difference signal.
2. Outline of Operation
When the shutter opens, the reset signals (ASIC and CPU)
and the serial signals (“take a picture” commands) from the
8-bit microprocessor are input and operation starts.
The picture data from CMOS passes through the A/D and
CDS, and is then input to the ASIC as digital data. The AF,
AE, AWB, shutter, and AGC value are computed from this
data, and three exposures are made to obtain the optimum
picture. The data which has already been stored in the SDRAM
is read by the CPU and color generation is carried out. Each
pixel is interpolated from the surrounding data as being ei-
ther R, G, and B primary color data to produce R, G and B
data. At this time, correction of the lens distortion which is a
characteristic of wide-angle lenses is carried out. After AWB
and
γ
processing are carried out, a matrix is generated and
aperture correction is carried out for the Y signal, and the
data is then compressed by JPEG and is then written to card
memory (SD card).
When the data is to be output to an external device, it is taken
data from the memory and output via the USB I/F. When played
back on the LCD and monitor, data is transferred from memery
to the SDRAM, and the image is then elongated so that it is
displayed over the SDRAM display area.
3. LCD Block
The LCD display circuit is located on the CP1 board and VF1
board, and consists of components such as a power circuit
and VCOM control circuit.
The signals from the ASIC are 8-bit digital signals, that is
input to the LCD directly. The 8-bit digital signals are con-
verted to RGB signals inside the LCD driver circuit. The LCD
is input signals from ASIC directly to the LCD, and function
such as image quality are controlled.
Because the LCD closes more as the difference in potential
between the VCOM (common polar voltage: AC) and the R,
G and B signals becomes greater, the display becomes darker;
if the difference in potential is smaller, the element opens and
the LCD become brighter.
In addition, the timing pulses for signals other than the video
signals are also input from the ASIC directory to the LCD.
Содержание VPC-WH1BL - Xacti Camcorder - 720p
Страница 20: ... 20 2 4 BOARD LOCATION CP1 board VF1 board TB3 board TB1 board TB2 board ST1 board ...
Страница 29: ... 29 MEMO ...
Страница 31: ...3 1 Table of accessories 1 1 2 4 5 5 6 6 7 7 8 3 ...
Страница 67: ......
Страница 68: ...Mar 09 SANYO Electric Co Ltd Osaka Japan ...