background image

RT7285C

9

DS7285C-03   July  2014

www.richtek.com

©

Copyright   2014 Richtek Technology Corporation. All rights reserved.                          is a registered trademark of Richtek Technology Corporation.

Application information

Inductor Selection

Selecting an inductor involves specifying its inductance
and also its required peak current. The exact inductor value
is generally flexible and is ultimately chosen to obtain the
best mix of cost, physical size, and circuit efficiency.
Lower inductor values benefit from reduced size and cost
and they can improve the circuit's transient response, but
they increase the inductor ripple current and output voltage
ripple and reduce the efficiency due to the resulting higher
peak currents. Conversely, higher inductor values increase
efficiency, but the inductor will either be physically larger
or have higher resistance since more turns of wire are
required and transient response will be slower since more
time is required to change current (up or down) in the
inductor. A good compromise between size, efficiency,
and transient response is to use a ripple current (

Δ

I

L

) about

20% to 40% of the desired full output load current.
Calculate the approximate inductor value by selecting the
input and output voltages, the switching frequency (f

SW

),

the maximum output current (I

OUT(MAX)

) and estimating a

Δ

I

L

 as some percentage of that current.

 

OUT

IN

OUT

IN

SW

L

V

V

V

L = 

V

f

I

Once an inductor value is chosen, the ripple current (

Δ

I

L

)

is calculated to determine the required peak inductor
current.

OUT

IN

OUT

L

IN

SW

L

L(PEAK)

OUT(MAX)

L

L(VALLY)

OUT(MAX)

V

V

V

I =

 

V

f

L

I

I

 

=  I

2

I

I

 

=  I

2

Considering the Typical Operating Circuit for 1.2V output
at 1.5A and an input voltage of 12V, using an inductor
ripple of 0.6A (40%), the calculated inductance value is :

1.2 12 1.2

L = 

 = 3.6

μ

H

12 500kHz 0.6

The ripple current was selected at 0.6A and, as long as
we use the calculated 3.6

μ

H inductance, that should be

the actual ripple current amount. The ripple current and
required peak current as below :

L

1.2 12 1.2

I =

 = 0.6A

12 500kHz 3.6

μ

H

L(PEAK)

0.6

and I

 = 1.5A

 = 1.8A

2

Inductor saturation current should be chosen over IC's
current limit.

Input Capacitor Selection

The input filter capacitors are needed to smooth out the
switched current drawn from the input power source and
to reduce voltage ripple on the input. The actual
capacitance value is less important than the RMS current
rating (and voltage rating, of course). The RMS input ripple
current (I

RMS

) is a function of the input voltage, output

voltage, and load current :

OUT

IN

RMS

OUT(MAX)

IN

OUT

V

V

I

 

=  I

1

V

V

Ceramic capacitors are most often used because of their
low cost, small size, high RMS current ratings, and robust
surge current capabilities. However, take care when these
capacitors are used at the input of circuits supplied by a
wall adapter or other supply connected through long, thin
wires. Current surges through the inductive wires can
induce ringing at the 

RT7285C

 input which could

potentially cause large, damaging voltage spikes at VIN.
If this phenomenon is observed, some bulk input
capacitance may be required. Ceramic capacitors (to meet
the RMS current requirement) can be placed in parallel
with other types such as tantalum, electrolytic, or polymer
(to reduce ringing and overshoot).

Choose capacitors rated at higher temperatures than
required. Several ceramic capacitors may be paralleled to
meet the RMS current, size, and height requirements of
the application. The typical operating circuit use 10

μ

F and

one 0.1

μ

F low ESR ceramic capacitors on the input.

Содержание RT7285C

Страница 1: ...acitors The output voltage can be adjusted between 0 6V and 8V Features 4 3V to 18V Input Voltage Range 1 5A Output Current Advanced Constant On Time Control Fast Transient Response Support All Ceramic Capacitors Up to 95 Efficiency 500kHz Switching Frequency Adjustable Output Voltage from 0 6V to 8V Cycle by Cycle Current Limit Input Under Voltage Lockout Hiccup Mode Under Voltage Protection Ther...

Страница 2: ...on Block Diagram Operation The RT7285C is a synchronous step down converter with advanced constant on time control mode Using theACOT control mode can reduce the output capacitance and fast transient response It can minimize the component size without additional external compensation network Current Protection The inductor current is monitored via the internal switches cycle by cycle Once the outp...

Страница 3: ... Low VEN_L 0 4 VIN Under Voltage Lockout Threshold VUVLO VIN Rising 3 55 3 9 4 25 V VIN Under Voltage Lockout Threshold Hysteresis 340 mV Electrical Characteristics VIN 12V TA 25 C unless otherwise specified Absolute Maximum Ratings Note 1 VINtoGND 0 3V to 20V SW to GND 0 3V to VIN 0 3V 10ns 5V to 25V BOOT toGND VSW 0 3V to VSW 6V Other Pins 0 3V to 6V Power Dissipation PD TA 25 C SOT 23 6 TSOT 23...

Страница 4: ... maximum rating conditions may affect device reliability Note 2 θJA is measured at TA 25 C on a high effective thermal conductivity four layer test board per JEDEC 51 7 The case position of θJC is on the top of the package Note 3 Devices are ESD sensitive Handling precaution is recommended Note 4 The device is not guaranteed to function outside its operating conditions Parameter Symbol Test Condit...

Страница 5: ...htek Technology Corporation Typical Application Circuit VOUT V R1 kΩ R2 kΩ L μH COUT μF CFF pF 5 110 15 10 22 39 3 3 115 25 5 6 8 22 33 2 5 25 5 8 06 4 7 22 NC 1 2 10 10 3 6 22 NC Table 1 Suggested Component Values VIN EN GND BOOT FB SW 4 3 5 6 1 L 3 6µH 100nF 22µF R1 10k R2 10k VOUT 1 2V 10µF VIN 4 3V to 18V RT7285C CBOOT CIN COUT Enable 2 CFF ...

Страница 6: ...V Switcing Frequency kHz 1 VOUT 1 2V IOUT 0A Output Voltage vs Load Current 1 190 1 194 1 198 1 202 1 206 1 210 1 214 1 218 1 222 1 226 1 230 0 0 3 0 6 0 9 1 2 1 5 Load Current A Output Voltage V VIN 4 5V to 18V VOUT 1 2V VIN 18V VIN 12V VIN 9V VIN 5V VIN 4 5V Reference vs Temperature 0 590 0 595 0 600 0 605 0 610 50 25 0 25 50 75 100 125 Temperature C Reference Voltage V IOUT 0A VIN 12V Efficienc...

Страница 7: ...V Div Time 100μs Div Load Transient Response VOUT 20mV Div IOUT 1A Div VIN 12V VOUT 1 2V IOUT 0 75A to 1 5A Switching Frequency vs Temperature 450 470 490 510 530 550 570 590 610 630 650 50 25 0 25 50 75 100 125 Temperature C Switching Frequency kHz 1 VOUT 1 2V VIN 6V VIN 12V VIN 18V VIN 4 5V Current Limit vs Temperature 1 0 1 2 1 4 1 6 1 8 2 0 2 2 2 4 2 6 2 8 3 0 50 25 0 25 50 75 100 125 Temperat...

Страница 8: ...me 2 5ms Div Power Off from VIN VIN 12V VOUT 1 2V IOUT 1 5A VOUT 1V Div ISW 1A Div Time 5ms Div Power Off from EN VIN 12V VOUT 1 2V IOUT 1 5A VOUT 1V Div VEN 2V Div ISW 1A Div VSW 10V Div Time 2 5ms Div Power On from VIN VIN 12V VOUT 1 2V IOUT 1 5A VOUT 1V Div VIN 10V Div ISW 1A Div VSW 10V Div Time 2 5ms Div Power On from EN VIN 12V VOUT 1 2V IOUT 1 5A VOUT 1V Div VEN 2V Div ISW 1A Div VSW 10V Di...

Страница 9: ...d an input voltage of 12V using an inductor ripple of 0 6A 40 the calculated inductance value is 1 2 12 1 2 L 3 6μH 12 500kHz 0 6 The ripple current was selected at 0 6A and as long as we use the calculated 3 6μH inductance that should be the actual ripple current amount The ripple current and required peak current as below L 1 2 12 1 2 I 0 6A 12 500kHz 3 6μH L PEAK 0 6 and I 1 5A 1 8A 2 Inductor ...

Страница 10: ...th 1 x 22μF output capacitance each with about 5mΩ ESR including PCB trace resistance the output voltage ripple components are RIPPLE ESR V 0 46A 5m 2 3mV RIPPLE C 0 46A V 5 227mV 8 22μF 500kHz RIPPLE V 2 3mV 5 227mV 7 527mV But some modern digital loads can exhibit nearly instantaneous load changes and the following section shows how to calculate the worst case voltage swings in response to very ...

Страница 11: ...ough a 100kΩ resistor Its large hysteresis band makes EN useful for simple delay and timing circuits EN can be externally pulled to VIN by adding a resistor capacitor delay REN and CEN in Figure 2 Calculate the delay time using EN s internal threshold where switching operation begins 1 4V typical An external MOSFET can be added to implement digital control of EN when no system voltage above 2V is ...

Страница 12: ...l power dissipation The switch OUT R2 V 0 6 R1 0 6 Place the FB resistors within 5mm of the FB pin Choose R2 between 10kΩ and 100kΩ to minimize power consumption without excessive noise pick up and calculate R1 as follows SW BOOT 5V 0 1µF RT7285C Over Temperature Protection The RT7285C features an Over Temperature Protection OTP circuitry to prevent from overheating due to excessive power dissipat...

Страница 13: ...n depends on the operating ambient temperature for fixed TJ MAX and thermal resistance θJA The derating curve in Figure 7 allows the designer to see the effect of rising ambient temperature on the maximum power dissipation Figure 7 Derating Curve of Maximum PowerDissipation Layout Considerations For best performance of the RT7285C the following layout guidelines must be strictly followed Input cap...

Страница 14: ...n Outline Dimension A A1 e b B D C H L SOT 23 6 Surface Mount Package Dimensions In Millimeters Dimensions In Inches Symbol Min Max Min Max A 0 889 1 295 0 031 0 051 A1 0 000 0 152 0 000 0 006 B 1 397 1 803 0 055 0 071 b 0 250 0 560 0 010 0 022 C 2 591 2 997 0 102 0 118 D 2 692 3 099 0 106 0 122 e 0 838 1 041 0 033 0 041 H 0 080 0 254 0 003 0 010 L 0 300 0 610 0 012 0 024 ...

Страница 15: ... embodied in a Richtek product Information furnished by Richtek is believed to be accurate and reliable However no responsibility is assumed by Richtek or its subsidiaries for its use nor for any infringements of patents or other rights of third parties which may result from its use No license is granted by implication or otherwise under any patent or patent rights of Richtek or its subsidiaries T...

Отзывы: