background image

10

USING ACTIVE BALANCED CIRCUITRY

Balanced lines have been used for many years and are in continued use today because of their immunity to

stray pickup.  Induced signals appear on both sides of the balanced line.  The receiving end of the balanced line

responds only to the difference voltage between the lines which is the desired signal.  Induced signals are common to

both and are balanced out.

Transformers have been the mainstay of balanced circuitry for decades.  Unfortunately, transformers cause

distortion and ringing, and are susceptible to magnetic flux pickup.  Further, good quality audio transformers are very

expensive.

The use of op-amp balanced circuitry has the advantages of transformers without the disadvantages.  The only

caveat is that careful wiring practices are more important with active balanced than with transformers.

Active balanced outputs and inputs use three wires: +,-, and ground.  The + and - terminals are both driven

and neither should ever be connected to ground.  For best performance, a three-conductor shielded wire should be

used.  The third wire completes the ground circuit.  The shield should be connected to the ground at one end of the

wire only.  If a two-wire shielded cable is used, it is important that a ground connection be made between the sending

and receiving units.  A ground circuit through equipment chassis or through three-prong AC cord ground is also

acceptable.

Single-ended audio interconnections lack the interference immunity of balanced hookups.  For that reason,

keep unbalanced connections short, direct, and well separated from AC power wires. To drive a single-ended load from

an active balanced source, use coaxial wire: + to center conductor and ground to shield, leaving the - output

unconnected.  To feed an active balanced input from a single-ended source, use coaxial wire, connecting the hot center

conductor to +.  Connect the shield to ground and put a jumper from ground to -.

When driving an active balanced input from a transformer balanced floating source, use two conductor

shielded wire.  Ground the shield at the source end.  Establish good ground between the chassis either directly or

through AC plug ground prongs.  At the load, connect the + lead to the + input and the - lead to the - input.  Put two

300 ohm resistors in series between the + input and the - input and connect their mid-point to the load ground.  This

correctly terminates the source output transformer for optimum frequency and transient response (freedom from

ringing) and provides a low impedance return path for leakage and induced hum.  If more than one active balanced load

is to be placed across a floating balanced transformer source, install this resistive termination once only.  From that

location to the active balanced loads, run three-conductor shielded wire, shield continued from the source chassis, +

from +, - from -, and ground from the mid-point of the terminating resistors.

To drive a balanced floating transformer load from an active balanced source, use shielded wire.  Connect the

shield to source ground and leave the shield open at the load end.  C to + and - to -, and establish a good

source ground to load chassis connection, either through a third wire in the interconnect cable or through chassis

contact or AC cord third wire ground.

Interconnections between pieces of stereo equipment require doubling the connections described above without

duplicating the ground connection.  Between pieces of active balanced stereo equipment, then, 5 shielded conductors

should be run.

When testing active balanced equipment with single ended test equipment, do not connect the - to test

equipment ground.  Most modern test equipment provides balanced inputs.  In many dual-trace oscilloscopes, balanced

signals may be displayed by running the two inputs in the “add” mode with one input switched to invert.  To perform a

test with single-ended equipment, + and - outputs must be tested independently and their results added.  Testing only

a single output results in a 6 db loss in output level.

The active balanced equipment interconnection format makes possible state of the art fidelity.  Careful

attention to detail and conservative practice will be rewarded with outstanding flat frequency response, low distortion,

and wide dynamic range.

Содержание DA-16

Страница 1: ...1 DA 8 and DA 16 Distribution Amplifiers ...

Страница 2: ...PERATION 4 CIRCUIT DESCRIPTION 5 Power Supply 5 Input Stage 5 Output Stages 5 DA 8 DA 16 PARTS LIST 6 DA 8 PARTS LAYOUT 7 DA 8 SCHEMATIC 8 DA 8 DA 16 SPECIFICATIONS 9 USING ACTIVE BALANCED CIRCUITRY 10 WARRANTY 11 Repair Policy 11 Return Instructions 11 ...

Страница 3: ...inchof height ina 19inchrack Toallow foradequate ventilation avoid mountingtheunitdirectly abovelargeheat producingequipmentsuchaspowerampsorpower supplies When stacking units it is recommended that one rack space 1 3 4 inch remain open between every three units CONNECTIONS Theunits areprimarily designed forbalanced inputsand outputs The inputground is connected to thechassis and power supply at a...

Страница 4: ...each output to the desired level keeping clipping in mind The input stage has a built in 6 dB pad This is used to increase input overload capabilities For low level signals where additional gain is required remove R7 which is mounted on terminal posts See the PC layout for exact position Todisconnect circuit signal ground from chassisground cutthe jumper marked J on thePC layout located nearthepow...

Страница 5: ...and R7 comprise a 6 dB pad used to raise input overload levels OUTPUT STAGES The output of IC1 feeds gain controls for each channel through a common buss IC2 a 5534 op amp operates at 28 dB gain This creates one side of the output signal IC3 another 5534 operates as a unity gain inverter to create the other side of the balanced output This scheme almost doubles the available output voltage to crea...

Страница 6: ... C9 100pF disc J2 Header 3Pin MTA C10 10 uF NP 25V C11 10 uF NP 25V C12 1 uF mylar C13 1 uF mylar C14 1 uF mylar C15 1 uF mylar C16 001disc C17 001disc C18 18 pF disc R5 4 75K1 MF R6 4 75K1 MF R7 1K 5 CF R8 10MEG5 CF R9 4 75K1 MF R10 4 75K1 MF R11 20K 1 MF R12 20K 1 MF R13 10Kvariable R14 4 7K 5 CF R15 4 7K 5 CF R16 39K 5 CF R17 10K 5 CF R18 10K 5 CF R19 10K 5 CF R20 100 5 CF R21 100 5 CF R22 2 2K...

Страница 7: ...7 ...

Страница 8: ...8 ...

Страница 9: ...00ohms OUTPUTIMPEDANCE 200ohms balanced FREQUENCY RESPONSE 1dB20Hzto20kHz THD 18 dBm 01 max 20 Hz to 20 kHz SMPTE IM 18dBm 01 max MAXIMUM INPUT LEVEL 26 dBm 14 dBm without pad COMMON MODE REJECTION 60 dB 60Hz min NOISE Min 90dBrelativeOdBinput SLEW RATE 13V micro sec OUTPUTCHANNELISOLATION 90 dB DIMENSIONS 19 rack mount 13 4 high 6 deep ...

Страница 10: ...ielded wire Ground the shield at the source end Establish good ground between the chassis either directly or through AC plug ground prongs At the load connect the lead to the input and the lead to the input Put two 300 ohm resistors in series between the input and the input and connect their mid point to the load ground This correctly terminatesthesourceoutputtransformerforoptimum frequency and tr...

Страница 11: ...harge by phoneor correspondence During the warranty period there will be no charge for parts or service made to units which show no sign of misuse by customer or lightning caused damage The customer is responsible for the cost of shippingtheir unit back to Radio Systems for repair During the warranty period shipment of small parts and assemblies will be made at no charge to the user Emergency next...

Страница 12: ...Rev 09 2003 601 Heron Drive Logan Township NJ 08085 Phone 856 467 8000 Fax 856 467 3044 http www radiosystems com ...

Отзывы: