Connections to Controls Concepts: Balance Arm
Prof. R. H. Bishop
University of South Florida
The self-balancing robot assembly provides insight into two key feedback control system concepts: (i) relative stability
and robust stability of an unstable open-loop system and (ii) fundamental controller design tension in the presence of
plant changes, external disturbances, and measurement noise.
Plant
Self-balancing robot
Sensor
Accelerometer, gyroscope, and encoder sensors
Actuator
DC servo motors
Performance
Robust stability, disturbance rejection, and measurement noise attenuation
Design objectives
Tune the control system by adjusting PD gain constants & stabilize the robot at the
vertical
Reference inputs
Regulation to zero angle (vertical pose)
The self-balancing robot and two geared, DC motor-driven wheels are the plant and actuators, respectively. The sensor
suite includes a gyroscope that measures angular velocity and an accelerometer that measures non-gravitational
acceleration. Since the accelerometer and gyro are known to have systematic errors (bias, drifts, etc.) and are noisy, the
signals from the sensors are combined to produce an accurate measurement of the orientation angle of the robot—
more accurate than can be achieved with either sensor individually. The external reference commands enter the
control system via the host computer either through keyboard entry or front panel commands sent over the network
connection to the myRIO which hosts the PD controller code. The design goal is the balance the robot in an upright
pose in the presence of external disturbances and to be robustly stable to plant variations (e.g., remain stable even
when a large mass is placed on the robot). The controller is a PD controller.
Relative stability and robust stability
A closed-loop feedback system is either stable or not stable. We say that a feedback control system that displays a
bounded response to a bounded input is stable. Note that this means that the closed-loop feedback system must have
a bounded output to every bounded input. This is known as absolute stability. We might wonder about marginally
stable closed-loop systems wherein the response remains bounded, but does not decay with time. Typically, our
design specifications require the closed-loop feedback system tracking error response, represented in the frequency
domain as E(s)=Y(s)-R(s), to decay to zero—not just remain bounded—and this is the focus of this discussion.
Obviously, it is not practical to test the response to every bounded input; however, a necessary and sufficient
condition for the closedloop feedback system to be stable is that all the poles of the closed-loop transfer function lie in
the left-half s-plane—this is a primary requirement of the controller design process. Once we have expertly designed
the controller so that the closed-loop feedback system is stable, we can further quantify the degree of stability,
often referred to as relative stability. So, a closedloop feedback system can be more (or less stable) with a given
controller design than the same system with a different controller design. This all relates to the concept of a robust
feedback control system. That is, a robust feedback control system is one that maintains acceptable performance in
the presence of plant uncertainty, external disturbances, and measurement noise. From the point of view of relative
stability, a robust controller typically displays a greater relative stability than a controller with less ability to retain
closed-loop stability in the presence of plant uncertainty, external disturbances, and measurement noise. Consider
the PD controller for the self-balancing robot that allows the robot to remain stable even when a large load (such as a
book) is placed on the top thereby significantly changing the plant or when an external gentle push is applied. A well-
designed PID controller can be very robust and explains why they are utilized in industry to such a large extent. Note
that the PD controller is a PID controller with the integral gain set to zero.
156
Self Balancing Robot Assembly
Содержание 41427
Страница 1: ...RobotBuilder sGuide for NI myRIO 41427 POWERED BY...
Страница 2: ......
Страница 20: ......
Страница 23: ...Finished Assembly Step 5 Subassembly Construction Instructions 21...
Страница 25: ...Step 5 Step 6 Step 7 Step 9 Step 8 Step 10 Subassembly Construction Instructions 23...
Страница 26: ...Step 12 Step 14 Step 16 Step 11 Step 13 Step 15 24 Subassembly Construction Instructions...
Страница 27: ...Step 18 Step 17 Finished Assembly Subassembly Construction Instructions 25...
Страница 29: ...Step 6 Finished Assembly Step 5 Subassembly Construction Instructions 27...
Страница 54: ......
Страница 57: ...Step 1 0 Step 1 1 Rover Vehicle Assembly 55...
Страница 58: ...Step 1 2 Step 1 3 56 Rover Vehicle Assembly...
Страница 59: ...Step 1 4 Rover Vehicle Assembly 57...
Страница 61: ...Step 2 0 Step 2 1 Rover Vehicle Assembly 59...
Страница 62: ...Step 2 2 60 Rover Vehicle Assembly...
Страница 64: ...Step 3 0 Step 3 1 62 Rover Vehicle Assembly...
Страница 65: ...Step 3 2 Step 3 3 Rover Vehicle Assembly 63...
Страница 66: ...Step 3 4 Step 3 5 64 Rover Vehicle Assembly...
Страница 68: ...Step 4 0 Step 4 1 66 Rover Vehicle Assembly...
Страница 69: ...Step 4 2 Step 4 3 Rover Vehicle Assembly 67...
Страница 70: ...Step 4 4 Step 4 5 68 Rover Vehicle Assembly...
Страница 71: ...Step 4 6 Step 4 7 Rover Vehicle Assembly 69...
Страница 73: ...Step 5 1 Step 5 0 Step 5 2 Step 5 3 Step 5 4 Step 5 5 Rover Vehicle Assembly 71...
Страница 74: ...Step 5 6 Step 5 7 72 Rover Vehicle Assembly...
Страница 76: ...Step 6 0 Step 6 1 74 Rover Vehicle Assembly...
Страница 77: ...Step 6 2 Step 6 3 Rover Vehicle Assembly 75...
Страница 78: ...Step 6 4 76 Rover Vehicle Assembly...
Страница 84: ......
Страница 87: ...Step 1 0 Step 1 1 Step 1 2 BalancingArmAssembly 85 Balancing Arm Assembly 85...
Страница 88: ...Step 1 4 Step 1 3 86 BalancingArmAssembly 86 Balancing Arm Assembly...
Страница 89: ...Step 1 6 Step 1 5 BalancingArmAssembly 87 Balancing Arm Assembly 87...
Страница 90: ...Step 1 8 Step 1 7 88 BalancingArmAssembly 88 Balancing Arm Assembly...
Страница 91: ...Step 1 10 Step 1 9 BalancingArmAssembly 89 Balancing Arm Assembly 89...
Страница 92: ...Step 1 12 Step 1 11 90 BalancingArmAssembly 90 Balancing Arm Assembly...
Страница 93: ...Step 1 14 Step 1 13 BalancingArmAssembly 91 Balancing Arm Assembly 91...
Страница 94: ...Step 1 16 Step 1 15 92 BalancingArmAssembly 92 Balancing Arm Assembly...
Страница 95: ...Step 1 17 BalancingArmAssembly 93 Balancing Arm Assembly 93...
Страница 97: ...Step 2 0 Step 2 1 BalancingArmAssembly 95 Balancing Arm Assembly 95...
Страница 98: ...Step 2 2 Step 2 3 96 BalancingArmAssembly 96 Balancing Arm Assembly...
Страница 99: ...Step 2 4 Step 2 5 BalancingArmAssembly 97 Balancing Arm Assembly 97...
Страница 100: ...Step 2 6 Step 2 7 98 BalancingArmAssembly 98 Balancing Arm Assembly...
Страница 101: ...Step 2 8 Step 2 9 BalancingArmAssembly 99 Balancing Arm Assembly 99...
Страница 102: ...Step 2 10 Step 2 11 100 BalancingArmAssembly 100 Balancing Arm Assembly...
Страница 103: ...Step 2 12 Step 2 13 BalancingArmAssembly 101 Balancing Arm Assembly 101...
Страница 105: ...Step 3 0 Step 3 1 BalancingArmAssembly 103 Balancing Arm Assembly 103...
Страница 106: ...Step 3 2 Step 3 3 104 BalancingArmAssembly 104 Balancing Arm Assembly...
Страница 108: ...Step 4 0 Step 4 1 106 BalancingArmAssembly 106 Balancing Arm Assembly...
Страница 109: ...Step 4 2 Step 4 3 BalancingArmAssembly 107 Balancing Arm Assembly 107...
Страница 110: ...Step 4 4 Step 4 5 108 BalancingArmAssembly 108 Balancing Arm Assembly...
Страница 111: ...Step 4 6 Step 4 7 BalancingArmAssembly 109 Balancing Arm Assembly 109...
Страница 112: ...Step 4 8 Step 4 9 110 BalancingArmAssembly 110 Balancing Arm Assembly...
Страница 113: ...Step 4 10 BalancingArmAssembly 111 Balancing Arm Assembly 111...
Страница 115: ...Step 5 1 Step 5 0 BalancingArmAssembly 113 Balancing Arm Assembly 113...
Страница 116: ...Step 5 3 Step 5 2 114 BalancingArmAssembly 114 Balancing Arm Assembly...
Страница 117: ...Finished assembly should look like this BalancingArmAssembly 115 Balancing Arm Assembly 115...
Страница 124: ......
Страница 127: ...Step 1 0 Step 1 1 Self Balancing Robot Assembly 125...
Страница 128: ...Step 1 2 Step 1 3 126 Self Balancing Robot Assembly...
Страница 129: ...Step 1 4 Step 1 5 Step 1 6 Self Balancing Robot Assembly 127...
Страница 131: ...Step 2 0 Step 2 1 Self Balancing Robot Assembly 129...
Страница 132: ...Step 2 2 Step 2 3 130 Self Balancing Robot Assembly...
Страница 133: ...Step 2 4 Step 2 5 Self Balancing Robot Assembly 131...
Страница 135: ...Step 3 0 Step 3 1 Self Balancing Robot Assembly 133...
Страница 136: ...Step 3 2 Step 3 3 134 Self Balancing Robot Assembly...
Страница 137: ...Step 3 4 Step 3 5 Self Balancing Robot Assembly 135...
Страница 138: ...Step 3 6 Step 3 7 136 Self Balancing Robot Assembly...
Страница 139: ...Step 3 8 Step 3 9 Self Balancing Robot Assembly 137...
Страница 140: ...Step 3 10 Step 3 11 138 Self Balancing Robot Assembly...
Страница 141: ...Step 3 12 Self Balancing Robot Assembly 139...
Страница 143: ...Partial assembly should look like this Self Balancing Robot Assembly 141...
Страница 144: ...Step 4 1 Step 4 0 142 Self Balancing Robot Assembly...
Страница 145: ...Step 4 3 Step 4 2 Self Balancing Robot Assembly 143...
Страница 146: ...Step 4 5 Step 4 4 144 Self Balancing Robot Assembly...
Страница 147: ...Step 4 7 Step 4 6 Self Balancing Robot Assembly 145...
Страница 148: ...Step 4 8 Step 4 9 146 Self Balancing Robot Assembly...
Страница 149: ...Step 4 10 Self Balancing Robot Assembly 147...
Страница 151: ...Step 5 0 Step 5 1 Self Balancing Robot Assembly 149...
Страница 152: ...Step 5 2 150 Self Balancing Robot Assembly...
Страница 153: ...Finished assembly should look like this Self Balancing Robot Assembly 151...
Страница 162: ...Call Toll Free 800 835 0686 FreeFax 800 533 8104 Visit Us Online at pitsco com RobotBuilder sGuide for NI myRIO...