manualshive.com logo in svg
background image

®

S p r i n g   C a r t   L a u n c h e r

T r a d i t i o n a l  E x p e r i m e n t

6

8.

Use the value of 

k

 that you found in the previous part and Equation 3 to calculate 

U

spring

.

9.

Look at the graph of velocity versus time to find the velocity of the cart just after 
the launch.

10.

Measure the mass of the cart with the launcher and spring attached.

11.

Use Equation 4 to calculate the kinetic energy of the cart.

12.

Compare the initial potential energy of the spring to the kinetic energy of the cart. 
Are they equal? If not, what might account for the difference?

Traditional Experiment

In this experiment (which does not require sensors), you will determine the spring 
constant by using a hanging mass to apply a known force. To determine the energy 
transferred to the cart, you will observe the maximum height that the cart reaches as it 
runs up an inclined track.

Spring Constant

 

1.

Follow set-up steps 1 
through 3 on page 2.

2.

Install an end stop about 20 cm from the end of the track.

3.

Clamp a pulley to the same end of the track. 

4.

Position the track so that a mass hanging from the pulley is free to hang over the 
edge of your lab bench.

5.

Level the track so that the cart does not roll when release from a standstill.

6.

Place the cart on the track with the launcher shaft through the hole in the end 
stop. 

7.

Tie a piece of string (about 40 cm long) to the launcher shaft. Run the string over 
the pulley and hang a 100 g mass from the string. 

8.

Adjust the pulley so that the string is horizontal between the pulley and the 
launcher shaft.

9.

In a table, record the position of the cart on the track and the total mass hanging 
from the string.

10.

Add 100 g to the hanging mass.

11.

Repeat steps 9 and 10 up to about 500 g.

12.

Calculate the force applied to the spring at each step: 

F

x

m

h

g

, where 

m

h

 is the 

hanging mass and 

g

 = 9.8 m/s

2

.

13.

Make a graph of 

F

x

 versus cart position.

14.

Draw a best-fit line on your graph. The slope of that line equals the spring con-
stant, 

k

.

Содержание ME-6843

Страница 1: ...n many of the PASCO dynamics systems See PASCO catalog or www pasco com for details 1 ME 6951 ME 6950 ME 9430 or ME 9454 Track2 1 ME 6953 or similar End Stops3 3 New style plastic end stops required These are included with PASCO dynamics systems starting in 2007 2 ME 9469 2 pack Recommended Equipment 250 g Compact Cart Mass 2 ME 6755 For sensor based method Motion Sensor4 4PASPORT sensors require ...

Страница 2: ...ck and two adjustable end stops 1 Fit the Spring Cart Launcher onto the top of the cart as illus trated Tighten the thumbscrews to secure it 2 Select one of the included springs Slide it onto the launcher shaft with the flared end out Turn the spring to secure the end in the spring retention hole as illustrated 3 Tie the string to the release pin 4 Install two end stops near one end of a dynamics ...

Страница 3: ...sition x1 to x2 the work that you do is equal to the area under the Fx versus x graph or eq 2 The potential energy stored in a spring is eq 3 The kinetic energy of a cart moving on a track is eq 4 where m is the mass of the cart and V is the magnitude of velocity The change in gravitational potential energy of a cart moving up an inclined track is eq 5 where g 9 8 m s2 s is the distance traveled a...

Страница 4: ... stop on the track If you are using a 1 2 m track place the end stop near one end If you are using a 2 2 m track place the end stop in the middle 3 Level the track so that the cart does not roll when release from a standstill 4 Clip the motion sensor to the end of the track opposite from the end stop Aim the sensor along the track Set the range switch to the NEAR or cart setting 5 Connect the moti...

Страница 5: ...all three springs Untie the string from the launcher shaft for the next part Spring Potential Energy and Kinetic Energy In this part you will study the relationship between the potential energy initially stored in the spring and the kinetic energy of the cart just after launch 1 Place a second end stop on the track about 8 cm behind the first end stop 2 Place the cart on the track with the launche...

Страница 6: ...ps 1 through 3 on page 2 2 Install an end stop about 20 cm from the end of the track 3 Clamp a pulley to the same end of the track 4 Position the track so that a mass hanging from the pulley is free to hang over the edge of your lab bench 5 Level the track so that the cart does not roll when release from a standstill 6 Place the cart on the track with the launcher shaft through the hole in the end...

Страница 7: ...sition of the cart as x2 5 Pull out the release pin with a quick jerk 6 Watch the cart carefully as it ascends the track Observe the highest position achieved Try to read it to the nearest centimeter Record this position as x3 7 Calculate the spring compression x x1 x2 8 Use x the value of k that you found in the previous part and Equation 3 to calcu late the initial potential energy of the spring...

Страница 8: ...llision with a Fixed Object Set up a track with an end stop at one end and a motion sensor at the other end Set the sampling rate to 50 Hz Start data recording Give the cart a push to make it roll along the track and bounce off the end stop Stop data recording Hold the cart stationary with the spring just touching the end stop and record a second data run to measure the zero compression position U...

Страница 9: ...ithout the written con sent of PASCO scientific is prohibited Trademarks PASCO PASCO scientific DataStudio PASPORT and ScienceWorkshop are trademarks or registered trademarks of PASCO scien tific in the United States and or in other countries All other brands products or service names are or may be trademarks or service marks of and are used to identify products or services of their respective own...

Отзывы: