14
C. The Planets
The planets don’t stay put like the stars, so to find them you
should refer to Sky Calendar at our website telescope.com, or
to charts published monthly in Astronomy, Sky & Telescope,
or other astronomy magazines. Venus, Mars, Jupiter, and
Saturn are the brightest objects in the sky after the Sun and
the Moon. Your SkyView Pro 100 EQ is capable of showing
you these planets in some detail. Other planets may be visible
but will likely appear starlike. Because planets are quite small
in apparent size, optional higher power eyepieces are recom-
mended and often needed for detailed observations. Not all
the planets are generally visible at any one time.
JUPITER The largest planet, Jupiter, is a great subject for
observation. You can see the disk of the giant planet and
watch the ever-changing positions of its four largest moons—
Io, Callisto, Europa, and Ganymede. Higher power eyepieces
should bring out the cloud bands on the planet’s disk.
SATURN The ringed planet is a breathtaking sight when it is
well positioned. The tilt angle of the rings varies over a period
of many years; sometimes they are seen edge-on, while at
other times they are broadside and look like giant “ears” on
each side of Saturn’s disk. A steady atmosphere (good see-
ing) is necessary for a good view. You will probably see a
bright “star” close by, which is Saturn’s brightest moon, Titan.
VENUS At its brightest, Venus is the most luminous object in
the sky, excluding the Sun and the Moon. It is so bright that
sometimes it is visible to the naked eye during full daylight!
Ironically, Venus appears as a thin crescent, not a full disk,
when at its peak brightness. Because it is so close to the Sun,
it never wanders too far from the morning or evening horizon.
No surface markings can be seen on Venus, which is always
shrouded in dense clouds.
MARS The Red Planet makes its closest approach to Earth
every two years. During close approaches you’ll see a red
disk, and may be able to see the polar ice cap. To see surface
detail on Mars, you will need a high power eyepiece and very
steady air!
D. The Stars
Stars will appear like twinkling points of light. Even powerful
telescopes cannot magnify stars to appear as more than a
point of light! You can, however, enjoy the different colors of
the stars and locate many pretty double and multiple stars.
The famous “Double-Double” in the constellation Lyra and the
gorgeous two-color double star Albireo in Cygnus are
favorites. Defocusing a star slightly can help bring out its color.
E. Deep-Sky Objects
Under dark skies, you can observe a wealth of fascinating
deep-sky objects, including gaseous nebulas, open and globu-
lar star clusters, and a variety of different types of galaxies.
Most deep-sky objects are very faint, so it is important that you
find an observing site well away from light pollution. Take plen-
ty of time to let your eyes adjust to the darkness. Do not expect
these subjects to appear like the photographs you see in
books and magazines; most will look like dim gray smudges.
But as you become more experienced and your observing
skills get sharper, you will be able to ferret out more and more
subtle details and structure.
How to Find Deep-sky Objects: Starhopping
Starhopping, as it is called by astronomers, is perhaps the
simplest way to hunt down objects to view in the night sky. It
entails first pointing the telescope at a star close to the object
you wish to observe, and then progressing to other stars clos-
er and closer to the object until it is in the field of view of the
eyepiece. It is a very intuitive technique that has been
employed for hundreds of years by professional and amateur
astronomers alike. Keep in mind, as with any new task, that
starhopping may seem challenging at first, but will become
easier over time and with practice.
To starhop, only a minimal amount of additional equipment is
necessary. A star chart or atlas that shows stars to at least
magnitude 5 is required. Select one that shows the positions
of many deep-sky objects, so you will have a lot of options to
choose from. If you do not know the positions of the constella-
tions in the night sky, you will need to get a planisphere to
identify them.
Start by choosing bright objects to view. The brightness of an
object is measured by its visual magnitude; the brighter an
object, the lower its magnitude. Choose an object with a visu-
al magnitude of 9 or lower. Many beginners start with the
Messier objects, which represent some of the best and bright-
est deep-sky objects, first catalogued about 200 years ago by
the French astronomer Charles Messier.
Determine in which constellation the object lies. Now, find the
constellation in the sky. If you do not recognize the constella-
tions on sight, consult a planisphere. The planisphere gives an
all-sky view and shows which constellations are visible on a
given night at a given time.
Now, look at your star chart and find the brightest star in the
constellation that is near the object you are trying to find.
Using the finder scope, point the telescope at this star and
center it on the crosshairs. Next, look again at the star chart
and find another suitably bright star near the bright star cur-
rently centered in the finder. Keep in mind that the field of view
of the finder scope is approximately 7°, so you should choose
another star that is no more that 7° from the first star, if possi-
ble. Move the telescope slightly, until the telescope is centered
on the new star.
Continue using stars as guideposts in this way until you are at
the approximate position of the object you are trying to find
(Figure 14). Look in the telescope’s eyepiece, and the object
should be somewhere within the field of view. If it’s not, sweep
the telescope carefully around the immediate vicinity until the
object is found.
If you have trouble finding the object, start the starhop again
from the brightest star near the object you wish to view. This
time, be sure the stars indicated on the star chart are in fact
the stars you are centering in the eyepiece. Remember, the
finder scope (and main telescope eyepiece, for that matter)
gives an inverted image, so you must keep this in mind when
starhopping from star to star.