background image

23

LTC3736

3736fa

deliver enough current to prevent this problem if the load
switch resistance is low and it is driven quickly. The only
solution is to limit the rise time of the switch drive so that
the load rise time is limited to approximately (25)(C

LOAD

).

Thus a 10

µ

F capacitor would require a 250

µ

s rise time,

limiting the charging current to about 200mA.

PC Board Layout Checklist

When laying out the printed circuit board, the following
checklist should be used to ensure proper operation of the
LTC3736. These items are illustrated in the layout diagram
of Figure 13. Figure 14 depicts the current waveforms
present in the various branches of the 2-phase dual
regulator.

1) The power loop (input capacitor, MOSFETs, inductor,
output capacitor) of each channel should be as small as

possible and isolated as much as possible from the power
loop of the other channel. Ideally, the drains of the P- and
N-channel FETs should be connected close to one another
with an input capacitor placed across the FET sources
(from the P-channel source to the N-channel source) right
at the FETs. It is better to have two separate, smaller valued
input capacitors (e.g., two 10

µ

F—one for each channel)

than it is to have a single larger valued capacitor (e.g.,
22

µ

F) that the channels share with a common connection.

2) The signal and power grounds should be kept separate.
The signal ground consists of the feedback resistor divid-
ers, I

TH

 compensation networks and the SGND pin.

The power grounds consist of the (–) terminal of the input
and output capacitors and the source of the N-channel
MOSFET. Each channel should have its own power ground
for its power loop (as described in (1) above). The power
grounds for the two channels should connect together at
a common point. It is most important to keep the ground
paths with high switching currents away from each other.

The PGND pins on the LTC3736 IC should be shorted
together and connected to the common power ground
connection (away from the switching currents).

3) Put the feedback resistors close to the V

FB

 pins. The

trace connecting the top feedback resistor (R

B

) to the

output capacitor should be a Kelvin trace. The I

TH 

compen-

sation components should also be very close to the
LTC3736.

4) The current sense traces (SENSE

+

 and SW) should be

Kelvin connections right at the P-channel MOSFET source
and drain.

5) Keep the switch nodes (SW1, SW2) and the gate driver
nodes (TG1, TG2, BG1, BG2) away from the small-signal
components, especially the opposite channels feedback
resistors, I

TH

 compensation components and the current

sense pins (SENSE

+

 and SW).

APPLICATIO  S I  FOR   ATIO

W

U

U

U

SW1

IPRG1

V

FB1

I

TH1

IPRG2

PLLLPF

SGND

V

IN

TRACK

V

FB2

I

TH2

PGOOD

SENSE1

+

PGND

BG1

SYNC/FCB

TG1

PGND

TG2

RUN/SS

BG2

PGND

SENSE2

+

SW2

1

2

3

4

5

6

7

8

9

10

11

12

24

23

22

21

20

19

18

17

16

15

14

13

LTC3736EGN

+

+

C

OUT1

C

OUT2

C

VIN1

C

VIN

V

OUT1

V

OUT2

BOLD LINES INDICATE HIGH CURRENT PATHS

3736 F13

L1

L2

MN1

MP1

MN2

MP2

V

IN

C

VIN2

Figure 13. LTC3736 Layout Diagram

Содержание No Rsense LTC3736

Страница 1: ...ent mode architecture with MOSFET VDS sensing eliminates the need for sense resistors and improves efficiency Power loss and noise due to the ESR of the input capacitance are minimized by operating th...

Страница 2: ...N PACKAGE 24 LEAD PLASTIC SSOP 24 23 22 21 20 19 18 17 16 15 14 13 SW1 IPRG1 VFB1 ITH1 IPRG2 PLLLPF SGND VIN TRACK VFB2 ITH2 PGOOD SENSE1 PGND BG1 SYNC FCB TG1 PGND TG2 RUN SS BG2 PGND SENSE2 SW2 ORDE...

Страница 3: ...0 5 VFB1 2 Input Current Note 5 10 50 nA TRACK Input Current TRACK 0 6V 10 50 nA Overvoltage Protect Threshold Measured at VFB 0 66 0 68 0 7 V Overvoltage Protect Hysteresis 20 mV Auxiliary Feedback T...

Страница 4: ...ONTINUOUS MODE SYNC FCB 0V VIN 3 3V VOUT 1 8V ILOAD 200mA FIGURE 17 CIRCUIT 4 s DIV 3736 G05 PULSE SKIPPING MODE SYNC FCB 550kHz IL 1A DIV VIN 5V RLOAD1 RLOAD2 1 FIGURE 15 CIRCUIT 200 s DIV 3736 G06 5...

Страница 5: ...vs Temperature Shutdown RUN Threshold vs Temperature RUN SS Pull Up Current vs Temperature Maximum Current Sense Threshold vs Temperature TEMPERATURE C 60 0 RUN SS VOLTAGE V 0 1 0 3 0 4 0 5 1 0 0 7 20...

Страница 6: ...nected to VFB2 from VOUT2 should be used to connect to TRACK from VOUT1 PGOOD Pin 9 Pin 12 Power Good Output Voltage Moni tor Open Drain Logic Output This pin is pulled to ground when the voltage on e...

Страница 7: ...ns19 13 Pins22 16 Bottom NMOS Gate Drive Output These pins drive the gates of the external N channel MOSFETs These pins have an output swing from PGND to SENSE SENSE1 SENSE2 Pins 21 11 Pins 24 14 Posi...

Страница 8: ...HROUGH PGND TG1 SENSE1 VIN VOUT1 CIN COUT1 MP1 MN1 BG1 R1B L1 PGND VFB1 ITH1 RITH1 CITH1 0 6V 0 12V SC1 VFB1 SW1 SENSE1 R1A EXTSS INTSS EAMP SHDN BURSTDIS SLEEP1 0 3V IPROG1 ICMP 0 15V BURSTDIS VFB1 O...

Страница 9: ...IREV2 S R RS2 ANTISHOOT THROUGH PGND SENSE2 TG2 SENSE2 VIN VOUT2 COUT2 MP2 MN2 BG2 R2B RTRACKB RTRACKA L2 PGND VFB2 ITH2 TRACK RITH2 CITH2 0 6V 0 12V SC2 TRACK VFB2 SW2 R2A VOUT1 EAMP BURSTDIS SLEEP2...

Страница 10: ...citor CSS between the RUN SS and SGND pins As the RUN SS pin continues to OPERATIO U rise linearly from approximately 0 65V to 1 3V being charged by the internal 0 7 A current source the EAMP regulate...

Страница 11: ...thresholdonVFB2 isbasedonthesmaller of 0 12V and a fraction of the voltage on the TRACK pin This also allows VOUT2 to start up and track VOUT1 more easily Note that if VOUT1 is truly short circuited O...

Страница 12: ...e maximum value of VITH is typically about 1 98V so the maximum sense voltage allowed across the external P channel MOSFET is 125mV 85mV or 204mV for the three respective states of the IPRG pin The pe...

Страница 13: ...itry Improvements in both conducted and radiatedEMIalsodirectlyaccrueasaresultofthereduced RMSinputcurrentandvoltage Significantcostandboard footprint savings are also realized by being able to use sm...

Страница 14: ...on the ITH pin is internally clamped which limits the maximum current sense threshold VSENSE MAX to approximately 128mV when IPRG is floating 86mV when IPRG is tied low 213mV when IPRG is tied high Th...

Страница 15: ...eration Shoot through between the P channel and N channel MOSFETs can most easily be spotted by monitoring the input supply current As the input supply voltage in creases iftheinputsupplycurrentincrea...

Страница 16: ...ng the controller clamps the peak inductor current to approximately I V R BURST PEAK SENSE MAX DS ON 1 4 Thecorrespondingaveragecurrentdependsontheamount of ripple current Lower inductor values higher...

Страница 17: ...N 2VOUT where IRMS IOUT 2 This simple worst case condition is commonly usedfordesignbecauseevensignificantdeviationsdonot offer much relief Note that capacitor manufacturers ripple current ratings are...

Страница 18: ...y COUT is the output capacitance and IRIPPLE is the ripple current in the induc tor The output ripple is highest at maximum input voltage since IRIPPLE increases with input voltage Setting Output Volt...

Страница 19: ...type that provides zero degrees phase shift between the external and internal oscillators This type of phasedetectordoesnotexhibitfalselocktoharmonicsof the external clock The output of the phase dete...

Страница 20: ...Phase Locked to External Clock Auxiliary Winding Control Using SYNC FCB Pin The SYNC FCB can be used as an auxiliary feedback to provide a means of regulating a flyback winding output When this pin d...

Страница 21: ...uceddownto2 4V Alsoshown is the effect on VREF Minimum On Time Considerations Minimumon time tON MIN isthesmallestamountoftime in which the LTC3736 is capable of turning the top P channel MOSFET on an...

Страница 22: ...tional loss Checking Transient Response The regulator loop response can be checked by looking at the load transient response Switching regulators take several cycles to respond to a step in load curre...

Страница 23: ...ack resistor divid ers ITH compensation networks and the SGND pin The power grounds consist of the terminal of the input and output capacitors and the source of the N channel MOSFET Eachchannelshouldh...

Страница 24: ...IPRG2 IPRG1 VFB1 ITH1 SW1 RVIN 10 RITH2 15k CITH2 220pF CSS 10nF CIN 10 F 2 CVIN 1 F VIN 5V VIN CITH2B 100pF RITH1 15k CITH1 220pF CITH1A 100pF RFB1B 187k RFB1A 59k PGOOD VFB2 TRACK 25 ITH2 TG2 LTC37...

Страница 25: ...ACKA 59k RFB2A 59k RFB2B 118k COUT2 22 F 2 COUT1 22 F 2 D1 VOUT1 2 5V 2A VOUT2 1 8V 2A 3736 F16 L1 L2 VISHAY IHLP 2525CZ 01 D2 Figure 17 2 Phase Synchronizable Dual Output Synchronous DC DC Converter...

Страница 26: ...15k CITH1 220pF CITH1A 100pF RFB1B 187k RFB1A 59k PGOOD VFB2 TRACK 25 ITH2 TG2 LTC3736EUF PGND TG1 SYNC FCB BG1 PGND 22 21 20 19 18 17 16 15 14 13 12 11 10 23 24 1 2 3 4 5 9 8 7 6 SENSE1 MP1 MP2 L1 1...

Страница 27: ...697 4 00 0 10 4 SIDES NOTE 1 DRAWING PROPOSED TO BE MADE A JEDEC PACKAGE OUTLINE MO 220 VARIATION WGGD X TO BE APPROVED 2 ALL DIMENSIONS ARE IN MILLIMETERS 3 DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PAC...

Страница 28: ...to 36V 5V and 3 3V LDOs Switching Regulator 5mm 5mm QFN or 28 Lead SSOP LTC3736 1 Dual 2 Phase No RSENSE Synchronous Controller with VIN 2 75V to 9 8V IOUT Up to 5A 4mm 4mm QFN Package Spread Spectrum...

Отзывы: