Q
U
IC
K
S
TA
R
T
G
U
ID
E
F
O
R
D
E
M
O
N
S
TR
A
TI
O
N
C
IR
C
U
IT
1
3
1
7
A
-B
A
C
TI
V
E
R
E
S
E
T
IS
O
LA
TE
D
1
8
-7
2
V
I
N
P
U
T
T
O
5
V
@
2
5
A
D
C
/D
C
P
O
W
E
R
C
O
N
V
E
R
TE
R
6
R
cs
1
0
.0
0
6
R
+
V
in
C
u
1
4
.7
u
R
2
3
1
k
R
2
4
4
7
k
V
u
1
R
1
5
1
7
4
k
R
2
0
1
0
0
k
C
1
0
0
.1
u
V
u
1
Q
1
D
1
0
*
1
0
0
p
R
3
3
0
1
R
C
1
5
2
.2
n
F
,
2
k
V
R2
8
30
9k
R
2
2
1
3
.3
k
H
A
T
2
1
7
3
G
4
5
R
2
-0
5
0
2
-0
0
5
G
N
D
8
S
D
7
M
ax
D
C
5
F
B
=
1
.2
3
V
2
C
o
m
p
1
R
o
sc
3
V
r=
2
.5
V
6
B
la
n
k
9
D
el
ay
1
2
O
C
1
1
S
y
n
c
4
Is
en
se
1
0
P
G
N
D
1
3
O
u
t
1
4
V
in
1
5
S
o
u
t
1
6
U
1
L
T
1
9
5
2
-1
C
1
3
.4
7
u
R
2
6
2
2
0
R
R
3
0
1
.2
k
R
1
4
3
3
K
C
2
3
1
u
F
V
fb
V
fb
R
1
3
2
2
K
C
o
1
10
0u
F,
X7
R
+
V
o
1
C
o
2
T
2
A
P
E
-6
8
3
8
6
C
1
4
1
u
C
1
2
4
7
0
p
R
1
9
5
6
k
C
S
-
2
C
S
+
1
C
G
3
V
cc
4
F
G
5
G
N
D
6
T
im
er
7
S
y
n
c
8
U
5
L
T
C
3
9
0
0
R
2
1
1
0
k
R
2
7
4
7
0
R
R
3
8
1
8
.2
K
R
3
5
1
3
7
k
R
3
4
3
.4
k
C
1
9
1
u
F
C
1
6
.2
2
u
C
1
7
1
5
n
+
V
o
1
R
3
1
1
0
R
S
S
3
V
cc
1
F
B
4
O
p
to
6
G
N
D
2
C
o
m
p
5
U
4
L
T
4
4
3
0
R
1
8
1
0
k
C
in
3
3
x
2
.2
u
F
+
V
in
D
5
P
D
Z
1
0
B
V
u
1
D
2
B
A
S
5
1
6
R
1
1
7
5
k
-V
in
+
V
in
1
8
V
t
o
7
2
V
R
1
2
.2
R
R3
2
18
7k
L
1
P
A
1
3
9
3
.2
0
2
Q
2
H
A
T
2
1
6
5
Q
3
H
A
T
2
1
6
9
R
1
6
3
3
k
C
5
0
.2
2
u
Q
9
B
C
X
5
5
R
1
0
1
k
D
9
P
D
Z
7
.5
B
R
8
*
1
u
F
F
G
F
G
C
G
C
G
C
3
1
u
R
5
1
0
R
Q
1
2
B
C
8
5
6
T
D
3
Q
1
0
P
B
S
S
8
1
1
0
+
V
b
+
V
b
L
2
1
.5
m
H
U
6
P
S
2
8
0
1
-1
T
1
In
p
3
V
cc
1
T
S
4
B
o
o
st
6
G
N
D
2
T
G
5
U
2
L
T
C
4
4
4
0
-5
C
2
1
4
7
0
p
D
1
B
A
S
5
1
6
V
u
1
D
1
1
B
A
S
5
1
6
G
N
D
+
V
o
u
t
C
7
2
2
0
p
O
u
t
C
8
1
0
0
p
C
6
*
B
A
S
5
1
6
D
7
B
0
5
4
0
W
C
4
*
B
A
S
5
1
6
+
C
sy
s
4
7
0
u
F
,
6
.3
V
C
2
4
2
2
p
C
9
1
0
0
p
C
2
5
3
3
n
Q
1
3
S
i2
3
2
5
D
1
4
B
A
S
5
1
6
R
4
5
1
0
k
+
V
r2
+
V
r2
C
o
3
D
1
7
B
A
S
5
1
6
R
5
3
2
0
0
2
5
7
,
8
1
0
,
1
1
C
3
3
0
.1
u
R
2
9
*
P
M
E
G
3
0
0
2
R
2
5
6
0
k
C
3
4
0
.2
2
u
R
5
4
1
0
R
C
1
,
C
3
5
1
n
R
4
,
R
5
5
3
.3
R
L
4
1
0
u
H
L
3
2
2
0
u
H
R
1
7
5
6
0
R
1
6
*
P
le
as
e
ch
an
g
e
th
e
re
fe
re
n
ce
d
es
ig
n
at
o
r
to
r
ef
le
ct
t
h
e
sy
m
b
o
l.
D
e
m
o
B
o
a
r
d
D
C
1
3
1
7
A
-B
s
c
h
e
m
a
ti
c
N
O
T
E
:
T
h
is
s
ch
em
at
ic
s
h
o
w
s
o
n
ly
t
h
e
co
m
p
o
n
en
ts
r
eq
u
ir
ed
f
o
r
o
p
er
at
io
n
o
f
-B
v
er
si
o
n
o
f
D
C
1
3
1
7
A
d
em
o
b
o
ar
d
.
A
ll
o
p
ti
o
n
al
c
o
m
p
o
n
en
ts
o
f
D
C
1
3
1
7
A
d
em
o
b
o
ar
d
h
av
e
b
ee
n
r
em
o
v
ed
.
A
ls
o
,
al
l
ze
ro
-o
h
m
r
es
is
to
rs
h
av
e
b
ee
n
r
ep
la
ce
d
w
it
h
w
ir
es
.
P
le
as
e
co
n
su
lt
t
h
e
fu
ll
D
C
1
3
1
7
A
-B
s
ch
em
at
ic
t
o
d
ec
id
e
if
a
n
y
o
f
th
e
o
p
ti
o
n
al
c
o
m
p
o
n
en
ts
s
h
o
u
ld
b
e
in
cl
u
d
ed
i
n
y
o
u
r
d
es
ig
n
.
Downloaded from
Downloaded from
Downloaded from
Downloaded from
Downloaded from
Downloaded from