background image

UG067 Rev.2.00

Page 5 of 22

Aug 23, 2017

ISL68200DEMO1Z

Design and Layout 

Considerations

To ensure a first pass design, the schematics design must be 
done correctly and the board must be carefully laid out. 

As a general rule, power layers should be close together, either 
on the top or bottom of the board, with the weak analog or logic 
signal layers on the opposite side of the board or internal layers. 
The ground-plane layer should be in between the power layers 
and the signal layers to provide shielding, often the layer below 
the top and the layer above the bottom should be the ground 
layers. 

There are two sets of components in a DC/DC converter, the 
power components and the small signal components. The power 
components are the most critical because they switch large 
amount of energy. The small signal components connect to 
sensitive nodes or supply critical bypassing current and signal 
coupling. 

The power components should be placed first and these include 
MOSFETs, input and output capacitors, and the inductor. Keeping 
the distance between the power train and the control IC short 
helps keep the gate drive traces short. These drive signals 
include the LGATE, UGATE, GND, PHASE, and BOOT. 

When placing MOSFETs, try to keep the source of the upper 
MOSFETs and the drain of the lower MOSFETs as close as 
thermally possible. Input high frequency capacitors should be 
placed close to the drain of the upper MOSFETs and the source of 
the lower MOSFETs. Place the output inductor and output 
capacitors between the MOSFETs and the load. High frequency 
output decoupling capacitors (ceramic) should be placed as 
close as possible to the decoupling target, making use of the 
shortest connection paths to any internal planes. Place the 
components in such a way that the area under the IC has less 
noise traces with high dV/dt and di/dt, such as gate signals, 
phase node signals, and the VIN plane. 

Tables 2

 and 

3

 provide design and layout checklist that the 

designer must pay attention to. 

TABLE 2. DESIGN AND LAYOUT CHECKLIST 

PIN 

NAME

NOISE 

SENSITIVITY

DESCRIPTION

EN

Yes

There is an internal 1µs filter. Decoupling the 
capacitor is NOT needed, but if needed, use a 
low time constant one to avoid too large a 
shutdown delay.

VIN

Yes

Place 16V+ X7R 1µF in close proximity to the 
VIN pin and the system ground plane.

7VLDO

Yes

Place 10V+ X7R 1µF in close proximity to the 
7VLDO pin and the system ground plane.

VCC

Yes

Place X7R 1µF in close proximity to the VCC 
pin and the system ground plane.

SCL, SDA

Yes

50kHz to 1.25MHz signal when the SMBus, 
PMBus, or I

2

C is sending commands. Pairing 

up with SALERT and routing carefully back to 
SMBus, PMBus, or I

2

C master. 20 mils spacing 

within SDA, SALERT, and SCL; and more than 
30 mils to all other signals. Refer to the 
SMBus, PMBus, or I

2

C design guidelines and 

place proper terminated (pull-up) resistance 
for impedance matching. Tie them to GND 
when not used.

SALERT

No

Open-drain and high dv/dt pin during 
transitions. Route it in the middle of SDA and 
SCL. Tie it to GND when not used.

PGOOD

No

Open-drain pin. Tie it to ground when not used.

RGND, 

VSEN

Yes

Differential pair routed to the remote sensing 
points with sufficient decoupling ceramics 
capacitors and not across or go above/under 
any switching nodes (BOOT, PHASE, UGATE, 
LGATE) or planes (VIN, PHASE, VOUT) even 
though they are not in the same layer. At least 
20 mils spacing from other traces. DO NOT 
share the same trace with CSRTN. 

CSRTN

Yes

Connect to the output rail side of the output 
inductor or current sensing resistor pin with a 
series resistor in close proximity to the pin. The 
series resistor sets the current gain and should 
be within 40

Ω

and 3.5k

Ω

. Decoupling 

(~0.1µF/X7R) on the output end (not the pin) 
is optional and might be required for long 
sense trace and a poor layout.

CSEN

Yes

Connect to the phase node side of the output 
inductor or current sensing resistor pin with 
L/DCR or ESL/R

SEN

 matching network in close 

proximity to the CSEN and CSRTN pins. 
Differentially routing back to the controller 
with at least 20 mils spacing from other 
traces. Should NOT cross or go above/under 
the switching nodes [BOOT, PHASE, UGATE, 
LGATE] and power planes (VIN, PHASE, VOUT) 
even though they are not in the same layer.

NTC

Yes

Place NTC 10k (Murata, NCP15XH103J03RC, 

= 3380) in close proximity to the output 

inductor’s output rail, not close to MOSFET 
side; the return trace should be 20 mils away 
from other traces. Place 1.54k

Ω

 pull-up and 

decoupling capacitor (typically 0.1µF) in close 
proximity to the controller. The pull-up resistor 
should be exactly tied to the same point as the 
VCC pin, not through an RC filter. If not used, 
connect this pin to VCC. 

IOUT

Yes

Scale R such that the IOUT pin voltage is 2.5V 
at 63.875A load. Place R and C in general 
proximity to the controller. The time constant 
of RC should be sufficient as an averaging 
function for the digital IOUT. An external 
pull-up resistor to VCC is recommended to 
cancel the IOUT offset at 0A load. 

TABLE 2. DESIGN AND LAYOUT CHECKLIST  (Continued)

PIN 

NAME

NOISE 

SENSITIVITY

DESCRIPTION

Содержание ISL68200 Series

Страница 1: ...om Intersil s website and be used to evaluate the full PMBus functionality of the part using a PC running Microsoft Windows Related Literature For a full list of related documents visit our website IS...

Страница 2: ...biased by the input supply typically 12V The resistor divider on the EN pin R4 and R12 can set the input supply undervoltage protection level and its hysteresis The ENABLE switch is a hardware operati...

Страница 3: ...power up down sequencing and operational configuration without a soldering iron Load Transient The on board transient load can be controlled by a function generator whose inputs are connected to FG_D...

Страница 4: ...tion JP2 JP3 JP9 and JP10 connectors are designed to cascade many Intesil s solutions for easy communication and system evaluation before the system integration and design TABLE 1 DESIGN EXAMPLES REFE...

Страница 5: ...ce X7R 1 F in close proximity to the VCC pin and the system ground plane SCL SDA Yes 50kHz to 1 25MHz signal when the SMBus PMBus or I2C is sending commands Pairing up with SALERT and routing carefull...

Страница 6: ...4 7 F in proximity to the PVCC pin and the system ground plane TABLE 2 DESIGN AND LAYOUT CHECKLIST Continued PIN NAME NOISE SENSITIVITY DESCRIPTION TABLE 3 TOP LAYOUT TIPS NUMBER DESCRIPTION 1 The lay...

Страница 7: ...TP Retry 400kHz AV 42 PROG4 00h SS 1 25mV us RR 200k Ohm AVMULTI 1X 50 5 0 X 5 9 0402 size NCP15XH103J03RC 9 2 5 1 96 1 6571 6 1 227 39 39 39 39 39 39 39 6 57 6 6 9 3 22 3 6 9287 1 9287 17 287 39 9 8...

Страница 8: ...DONGLE FROM PREQUEL TO SEQUEL ON LEFT OF BOARD MALE ON RIGHT OF BOARD FEMALE 2 5 72 2 5 17 5 This board only uses SDA SCL SALRT GND signals Pull Up Impedance to Be Ajusted for How Many Boards are con...

Страница 9: ...3EKF1502V 1 R9 29 4k 1 SM0603 YAGEO RC0603FR 0729K4L 4 R10 R15 R16 R17 10k 1 SM0603 VENKEL CR0603 10W 1002FT 1 R12 24 9k 1 SM0603 PANASONIC ERJ 3EKF2492V 1 R13 9 53k 1 SM0603 YAGEO 9C06031A9531FKHFT 2...

Страница 10: ...X 131 4353 00 4 TP3 TP4 TP5 TP6 Test Point MTP500x KEYSTONE 5002 2 VCC12 FG_DRIVE Test Point RED MTP500x KEYSTONE 5000 2 VIN_GND FG_GND Test Point BLACK MTP500x KEYSTONE 5001 4 R32 R33 R36 R37 3 1 SM0...

Страница 11: ...A SLOPE 1 EFFICIENCY ERROR DIGITAL I OUT LOAD A 80 81 82 83 84 85 86 87 88 89 90 91 92 0 2 4 6 8 10 12 14 16 18 20 22 24 LOAD CURRENT A VOUT 0 8V VOUT 1V VOUT 1 2V VOUT 1 5V VOUT 1 8V EFFICIENCY 83 8...

Страница 12: ...3 94 95 0 2 4 6 8 10 12 14 16 18 20 22 24 LOAD CURRENT A VOUT 0 8V VOUT 1V VOUT 1 2V VOUT 1 5V VOUT 1 8V EFFICIENCY 5 0 5 10 15 20 25 30 75 77 5 80 82 5 85 87 5 90 0 2 4 6 8 10 12 14 16 18 20 22 24 LO...

Страница 13: ...IN PFM MODE CH1 VOUT CH2 PHASE FIGURE 23 STEP RESPONSE AT PWM MODE VOUT 1V fSW 400kHz LOAD PROFILE 0 25A TO 12 75A AT 25A s CH1 VOUT CH2 LOAD FIGURE 24 STEP RESPONSE AT PFM ENABLED MODE VOUT 1V fSW 40...

Страница 14: ...PHASE FIGURE 28 OVERVOLTAGE PROTECTION CH1 VOUT CH2 PGOOD CH3 LGATE FIGURE 29 OVER TEMPERATURE PROTECTION AT 1A LOAD CH1 VOUT CH2 LOAD CH3 PHASE CH4 NTC FIGURE 30 POWER DOWN AT VOUT 1V 1A LOAD CH1 VO...

Страница 15: ...UG067 Rev 2 00 Page 15 of 22 Aug 23 2017 ISL68200DEMO1Z ISL68200DEMO1Z Board Layout FIGURE 31 PCB TOP ASSEMBLY...

Страница 16: ...UG067 Rev 2 00 Page 16 of 22 Aug 23 2017 ISL68200DEMO1Z FIGURE 32 PCB TOP LAYER ISL68200DEMO1Z Board Layout Continued...

Страница 17: ...UG067 Rev 2 00 Page 17 of 22 Aug 23 2017 ISL68200DEMO1Z FIGURE 33 PCB INNER LAYER 2 TOP VIEW ISL68200DEMO1Z Board Layout Continued...

Страница 18: ...UG067 Rev 2 00 Page 18 of 22 Aug 23 2017 ISL68200DEMO1Z FIGURE 34 PCB INNER LAYER 3 TOP VIEW ISL68200DEMO1Z Board Layout Continued...

Страница 19: ...UG067 Rev 2 00 Page 19 of 22 Aug 23 2017 ISL68200DEMO1Z FIGURE 35 PCB INNER LAYER 4 TOP VIEW ISL68200DEMO1Z Board Layout Continued...

Страница 20: ...UG067 Rev 2 00 Page 20 of 22 Aug 23 2017 ISL68200DEMO1Z FIGURE 36 PCB INNER LAYER 5 TOP VIEW ISL68200DEMO1Z Board Layout Continued...

Страница 21: ...UG067 Rev 2 00 Page 21 of 22 Aug 23 2017 ISL68200DEMO1Z FIGURE 37 PCB BOTTOM LAYER TOP VIEW ISL68200DEMO1Z Board Layout Continued...

Страница 22: ...is current before proceeding For information regarding Intersil Corporation and its products see www intersil com ISL68200DEMO1Z UG067 Rev 2 00 Page 22 of 22 Aug 23 2017 Copyright Intersil Americas L...

Отзывы: