Infineon CoolGaN Скачать руководство пользователя страница 9

  

Application Note 

9 of 23 

V 1.1  

                                                                                                                                                                                                                                                                     2020-11-09  

CoolGaN™ 600 V half-bridge evaluation platform featuring GaN 
EiceDRIVER™ 

  

Setup and use 

   

4

 

Setup and use 

Attention:

 

This evaluation board has exposed high-voltage contacts. Use appropriate protective 
measures to avoid shock. The evaluation board has no overcurrent shutdown, so it is possible 
to drive the GaN transistors to currents far beyond their rating, which may result in their 
destruction. Use appropriate protective covers to prevent any possible injury from exploding 
components. Observe the maximum rating of the DC bus capacitor, and keep the bus voltage 
below 450 V. Exceeding this value risks the capacitor venting violently. Always set 
appropriate current limit values on the external lab power supplies to minimize catastrophic 
damage to the board in the event of a fault. It is up to you to set the PWM input signal 
appropriately to avoid damage. 

4.1

 

Test equipment needed 

 

5 V power supply capable of 0.5 A output current to supply V

cc

 

Bus voltage supply up to 450 V DC with sufficient current to supply the power needed for the planned 
testing. For short pulse testing even to maximum current, the current drawn from the bus voltage supply is 
very small, as the DC bus bulk storage capacitor provides the instantaneous energy. 

 

Signal generator to provide the necessary PWM drive command for the half-bridge. The generator must be 
capable of driving standard 5 V logic levels into a 50 Ω terminated load. Rise and fall time should be in the 5 
ns range for best timing accuracy/repeatability. 

 

1.2 mm slotted screwdriver for adjusting the deadtime trimpots R11 and R21. 

 

Interconnect cable for PWM input: The PWM input connector is a 50 Ω terminated MMCX coaxial connector. 
Assuming the signal source is a conventional BNC connector, you will need a BNC male to MMCX plug cable 
(

Fairview Microwave FMC0809315

or a BNC to MMCX adapter. 

 

Oscilloscope for measurement. Due to the fast transient voltage and current possible using GaN transistors, 
an oscilloscope with a bandwidth >500 MHz is recommended. 

 

For measuring the high-side gate voltage, an isolated probe with a bandwidth of 500 MHz or better, such as 
the 

Tektronix TIVH05 or TIVH08

 is recommended. An MMCX connector is provided for this purpose (TP1 on 

the back side of the board). We are not aware of any other isolated probe with sufficient common-mode 
transient immunity to accurately measure the high-side gate voltage. 

 

A standard (>500 MHz) passive probe with the short ground pin can be used to measure Q2 low-side gate 
voltage on TP2, but the test point reference on the Kelvin source of Q2 may have ground bounce compared 
to the V

sw

 measurement reference due to L di/dt ground bounce. A common-mode core on each passive 

probe cable can help minimize any measurement artifacts due to common-mode cable shield currents. 
Another effective solution is to use a 1 GHz active differential proble such as the 

Tektronix TDP1000

This 

can further minimize measurement errors/artifacts due to common-mode ground currents, but can be 
sensitive to coupled dv/dt from the TIVM1 probe snout. 

 

Make sure the voltage probe used on TP3 to measure the switch node voltage is rated appropriately for 
voltage and bandwidth. We recommend 

Tektronix TPP0850

 high-voltage probe with 800 MHz bandwidth. 

4.2

 

Connections to the terminal block 

With the exception of the coaxial PWM connection to J1, all other I/O and power connections to the evaluation 
board are made to the pluggable terminal-block X1. The pluggable terminal block makes it more convenient to 
remove the board from the test-bench for any component value changes during test, without having to 
disconnect and reconnect everything each time a change is made. 

 

Содержание CoolGaN

Страница 1: ...of EiceDRIVER GaN gate drivers and isolated power supplies for the gate drivers along with input logic that provides adjustable deadtime Using an external inductor the board can be configured for buck...

Страница 2: ...mer 6 3 3 Gate drive circuit 7 3 4 Half bridge output circuit 8 4 Setup and use 9 4 1 Test equipment needed 9 4 2 Connections to the terminal block 9 4 2 1 Connections for double pulse testing 10 4 2...

Страница 3: ...range up to 450 V limited by the capacitor rating This half bridge can switch continuous currents of 12 A and peak currents of 35 A hard or soft switching Operating frequency can be up to several MHz...

Страница 4: ...it Deadtime Circuit Isolated Gate Drive Power Vin Vo Vin PWM 0V Evaluation Board 0 400 V DC Laboratory Power Supply Test Inductor 5 V DC Laboratory Power Supply 50 Pulse Generator Figure 2 Evaluation...

Страница 5: ...be set long enough that the high side always fully turns off before the low side turn on with some margin and vice versa A simple adjustable RCD delay circuit generates the deadtime Whenever U11 or U...

Страница 6: ...DC DC converter shown in Figure 5 It takes the 5 V input and provides two isolated 8 V outputs VDD1 VSS1 and VDD2 VSS2 A small transformer T1 provides low capacitance isolation and voltage scaling Th...

Страница 7: ...e gate RC network described in the datasheet consists of Rx4 Cx4 and Rx5 The small Schottky diode Dx5 provides a low impedance return path for faster gate turnoff effectively bypassing Rx4 Note that t...

Страница 8: ...wer supply Attention Normally the bus capacitor is discharged when the lab power supply is switched off But if the power connector is removed while the capacitor is charged not recommended the bus cap...

Страница 9: ...a conventional BNC connector you will need a BNC male to MMCX plug cable Fairview Microwave FMC0809315 or a BNC to MMCX adapter Oscilloscope for measurement Due to the fast transient voltage and curre...

Страница 10: ...external inductor is connected between Vsw and Vo terminals the circuit is configured as a buck converter If a PWM signal is applied to the PWM input the output voltage will be proportional to the in...

Страница 11: ...nductor 5 V DC Laboratory Power Supply 50 Pulse Generator DC Load Figure 9 Connecting the evaluation board in the buck topology Figure 10 shows example waveforms operating in ZVS buck mode at 1 5 MHz...

Страница 12: ...V to zero there is a large change in Crss and thus a significant charge injected into the gate approximately 3 nC This charge in a short time I dq dt results in a short current spike that pulls the ga...

Страница 13: ...this signal is delayed from TP4 by the deadtime circuit so it has an exponential risetime characteristic Voltage level is standard 5 V AHCT logic level TP1 High side gate voltage signal is the gate of...

Страница 14: ...e rising edge of PWM To verify and adjust deadtime connect a 5 V DC supply to the 5 V input on the eval board and connect a pulse generator to the PWM input J1 refer to section 4 3 Set the generator f...

Страница 15: ...ly the rising and falling edge deadtimes are set to the same value Turning the trimpots clockwise increases the deadtime Figure 13 Measuring deadtime on the falling edge of PWM 4 7 Test inductor recom...

Страница 16: ...zero reverse recovery characteristic Double pulse testing is typically done 1 burst at a time not continuously in order to keep power dissipation low even when testing to the voltage and current limit...

Страница 17: ...gh side transistor operating in 3rd quardrant conduction mode You can see the switch node voltage rises several volts above the bus during deadtime due to the effective diode drop across the high side...

Страница 18: ...form featuring GaN EiceDRIVER Complete schematic 5 Complete schematic Note Part numbers 1 9 are in the ouput power stage 1x part numbers belong to the high side gate drive 2x are low side gate drive a...

Страница 19: ...ng GaN EiceDRIVER PCB layout 6 PCB layout The evaluation board is 1 6 mm thick with 4 evenly spaced copper layers 35 m thick The layer stackup is depicted below Figure 16 Top layer copper layer with t...

Страница 20: ...11 09 CoolGaN 600 V half bridge evaluation platform featuring GaN EiceDRIVER PCB layout Figure 18 Lower middle copper layer with top and bottom component overlay Figure 19 Bottom copper layer with bot...

Страница 21: ...3 D14 D24 LED GREEN CLEAR 0805 SMD J1 CONN MMCX JACK STR 50 OHM SMD Q1 Q2 Infineon IGOT60R070D1 CoolGaN Transistor R1 R2 RES SMD 499K OHM 1 1W 2512 R11 R21 TRIMMER 1k OHM 0 125W SMD R12 R15 R22 R25 RE...

Страница 22: ...aN EiceDRIVER Revision history 8 Revision history Document version Date of release Description of changes V 1 0 2019 01 16 First release V 1 1 2020 11 09 Updates for version B of the driver IC updated...

Страница 23: ...intellectual property rights of any third party with respect to any and all information given in this application note The data contained in this document is exclusively intended for technically trai...

Отзывы: