IEPC EPC9126 Скачать руководство пользователя страница 4

QUICK START GUIDE

Demonstration System EPC9126xx

EPC – THE LEADER IN GaN TECHNOLOGY   |   

WWW.EPC-CO.COM

   |   COPYRIGHT 2019   |                                                                                                                         |   4

The recommended use of the interposer is the following:
1.  Apply solder paste to the U2 pads on the EPC9126xx PCB.
2.  Apply solder paste to the appropriate pads on the top side of the 

interposer.

3.  Carefully position the desired interposer with the bottom side facing 

the top side of the EPC9126xx on the U2 footprint.

4.  Position the laser diode or desired load on the interposer.
5.  Reflow with the recommended temperature profile for the solder 

used. The use of a reflow oven that can meet the recommended 
soldering specifications is highly recommended. Other reflow 
methods may also be used based on the experience of the user.

The power loop inductance, including that of the laser diode, is a primary 
factor that determines the shape of the laser pulse. Considerable effort 
has been made to minimize power loop inductance while maximizing 
the choice of laser diode and its orientation. The discharge caps, 
current sense resistors, and the eGaN FET must all be mounted in close 
proximity to minimize inductance. As a result, the user must take care 
not to damage any components when mounting the laser or changing 
other components in the power loop. 
Laser diode current pulses can result in peak powers of several hundred 
watts to over 1 kW. Laser diodes for lidar applications are designed with 
this in mind, but thermal limitations of the laser package mean that 
pulse widths, duty cycles, and pulse repetition frequency limitations 
must be observed. Read laser diode data sheets carefully and follow any 
manufacturers’ recommendations.

This board has been tested with the following laser diodes: 
TPGAD1S09H from Excelitas  (

http://www.excelitas.com

). 

MEASUREMENT CONSIDERATIONS

SMA jacks are provided to measure several voltages in the circuit, including 
gate drive input, Q1 gate voltage, Q1 drain voltage, charge voltage of 
the energy storage cap, and the sense voltage of the discharge cap 
current measurement shunt. All measurement points are designed to be 
terminated in 50 Ω, hence when viewing waveforms, the oscilloscope 
inputs should be set to a 50 Ω input. Ideally, unused inputs should be 
also terminated with a 50 Ω load to prevent the probes from creating 
additional resonances. The Q1 drain voltage and the discharge cap sense 
voltage have on-board terminations to greatly reduce this effect, and in 
practice, the remaining resonances may be small or otherwise tolerable. 
It is recommended that the user verify this for their own requirements. 
All sense measurement SMAs, except for the shunt measurement, use the 
transmission line probe principle to obtain waveform fidelity at sub-ns 
time scales. They have been verified to produce near-identical results to a 
Tektronix P9158 3 GHz transmission line probe. As a result of their design, 
they have a built-in attenuation factor. In addition, the impedance of the 
probes is relatively small, and as a result, the test points for high voltage 
measurements include a DC blocking capacitor. If long pulse widths are 
used, these test points may yield erroneous results, and an external probe 
should be used. 
The current shunt is designed to estimate the discharge capacitor current. 
Substantial effort has been made to reduce the inductive effects of the 
current shunt, both through the use of carefully selected resistors and a 
compensation network to help compensate for the shunt equivalent 
series resistance. However, the shunt is a compromise between current 
measurement accuracy and minimizing the impact on the laser driver 
performance. If a more accurate shunt waveform measurement is desired, 
the shunt resistors may be replaced with ones that provide higher accuracy. 
This is likely to require higher resistor values, which can contribute to errors 
in the capacitor voltage measurement and in increased power dissipation. 
Finally, note that the capacitor current also includes the current due to D1 
and D2 (if included), and PCB capacitance. 
Table 2 summarizes the properties of the SMA test points for ease of 
reference.

Table 2: Properties of SMA test points 

Designator

PCB label

Description

Attenuation factor

DC blocking cap LF time constant

Internal 50 Ω  

termination

J3

CAP

Discharge capacitor voltage 

(VCHARGE on schematic)

41 V/V

10 nF

10 μs

YES

J6

SHUNT

Discharge shunt voltage

21.2 A/V (EPC9126)

45.5 A/V (EPC9126HC)

NO

N/A

NO

J7

V

OUT

Q1 drain voltage

41 V/V

10 nF

10 μs

YES

J9

V

GDIN

Gate drive input

20

NO

N/A

NO

J10

V

GS

Q1 gate voltage

20

NO

N/A

NO

Laser diode

or load

EPC9989

interposer

EPC9126

eGaN FET

Gate driver

Current

shunt

Discharge

capacitors 

Recharging

resistors 

Figure 5: Laser mounted to EPC9126xx using interposer

Содержание EPC9126

Страница 1: ...Development Board EPC9126 EPC9126HC Quick Start Guide EPC2212 EPC2001C 100VHighCurrentPulsedLaserDiodeDriver Revision 3 0 ...

Страница 2: ...f the EPC2212 or EPC2001C HC version eGaN FET Refer to Figure 2 for proper connect and measurement setup and follow the procedure below 1 Review laser safety considerations Observe all necessary laser safety requirements including the use of personal protection equipment PPE asrequired Refertoqualifiedsafetypersonnel as necessary 2 With power off install laser diode U2 or other load The use of one...

Страница 3: ... the application note Getting the Most out of eGaN FETs and Your EPC9126 Laser Driver AN027 available at www epc co com While this application note refers to V2 5 of the EPC9126xx the basic principles and design methods are still applicable LASER DIODE OR LOAD CONSIDERATIONS The EPC9126xx can be used as is to mount a laser diode or other load Figure 3 highlights the output pad locations However ma...

Страница 4: ...oad to prevent the probes from creating additional resonances The Q1 drain voltage and the discharge cap sense voltage have on board terminations to greatly reduce this effect and in practice the remaining resonances may be small or otherwise tolerable Itisrecommendedthattheuserverifythisfortheirownrequirements All sense measurement SMAs except for the shunt measurement use the transmission line p...

Страница 5: ... 1 0 3 4 0 0 1 0 1 0 2 9 0 1 1 0 1 0 2 4 0 0 0 1 1 0 2 1 0 1 0 1 1 0 1 9 0 0 1 1 1 0 1 7 0 1 1 1 1 0 1 2 Switch setting Pos 1 ON Pulse width ns 6 5 4 3 2 1 0 0 0 0 0 1 1 6 0 1 0 0 0 1 1 46 0 0 1 0 0 1 1 32 0 1 1 0 0 1 1 17 0 0 0 1 0 1 0 96 0 1 0 1 0 1 0 65 0 0 1 1 0 1 0 45 0 1 1 1 0 1 0 32 0 0 0 0 1 1 0 3 0 1 0 0 1 1 0 0 0 1 0 1 1 0 0 1 1 0 1 1 0 0 0 0 1 1 1 0 0 1 0 1 1 1 0 0 0 1 1 1 1 0 0 1 1 1 1...

Страница 6: ...J6 SMA SMD J9 SMA SMD J8 953 1 2 R33 Gate voltage sense Shunt voltage sense Discharge cap voltage sense 4 7 μF 25 V C1 4 40 HOLE1 4 40 HOLE2 4 40 HOLE3 4 40 HOLE4 1 2 J1 1776113 2 330 Ω 700 mA 1 2 FB3 CAP SHUNT i Z 50 single core i Z 50 single core i Z 50 single core i Z 50 single core i Z 50 single core i Z 50 single core i GD prop delay i GD prop delay 1 TP6 1 TP5 3x1 0 1 Male Vert 1 2 3 J4 Vlog...

Страница 7: ...C 16 1 R1 Resistor 0 0402 Panasonic ERJ 2GE0R00X 17 2 R10 R11 Resistor 100 1 0603 Vishay MCT0603MC1000FP500 18 1 R12 Resistor 49 9 1 0402 Panasonic ERJ 2RKF49R9X 19 1 R13 Resistor 0 0402 Panasonic ERJ 2GE0R00X 20 5 R14 R15 R16 R17 R18 Resistor 0 47 1 0402 EPC9126 Resistor 0 22 1 0402 EPC9126HC Rohm UCR01MVPFLR470 EPC9126 UCR01MVPFLR220 EPC9126HC 21 4 R2 R3 R5 R6 Resistor 3 9 k 1 0402 Panasonic ERJ...

Страница 8: ...t EfficientPowerConversionCorporation EPC makesnoguaranteethatthepurchasedboardis100 RoHScompliant TheEvaluationboard orkit isfordemonstrationpurposesonlyandneithertheBoardnorthisQuickStartGuideconstituteasalescontractorcreateanykindofwarranty whetherexpressor implied astotheapplicationsorproductsinvolved Disclaimer EPCreservestherightatanytime withoutnotice tomakechangestoanyproductsdescribedhere...

Отзывы: