background image

GOLDBERG AND MÄKIVIRTA

 

OPTIMISED EQUALISATION COMPARISON

 

 

AES 116TH CONVENTION, BERLIN, GERMANY, 2004 MAY 8-11 

3.2.  Graphic Equaliser Optimiser 

With 

Q

 and centre frequency 

f

0

 fixed for each third-

octave band, the remaining variable available for ad-
justment is the gain 

G

. This is bound between 0 and –

12 dB. A least squares method, Matlab’s 

lsqnonlin

” function [18], minimises the objective 

function, 

 

df

f

x

f

x

f

a

E

f

f

f

m

m

2

0

2

1

)

(

)

(

)

(

min

=

=

 (5) 

where 

x

(

f

) is the third-octave smoothed [19] magni-

tude of the loudspeaker in-situ frequency response, 

a

m

(

f

) is the graphic equaliser magnitude response, 

x

0

(

f

is the target response and frequencies 

f

1

 and 

f

2

 define 

the optimisation band, i.e. –3 dB lower cut-off fre-
quency for the loudspeaker in question and the high 
frequency limit for the optimisation at 15 kHz. 

The optimised filter values are rounded after optimisa-
tion to the nearest 0.1dB, as this is the typical gain 
resolution found in commercially available DSP 
graphic equalisers [20]. These values are used to filter 
the in-situ loudspeaker response prior to statistical 
analysis. 

Visual inspection of the optimised responses shows 
that the algorithm is robust to finding the global mini-
mum. 

 

3.3. Computational Load 

Optimisation speed was tested on a Pentium M 1.6 
GHz based computer. The room response equaliser 
optimisation algorithm runs in about 1.5–3 s depend-
ing on the loudspeaker model, whereas the graphical 
equaliser optimisation algorithm takes 30–60 s, i.e. 
10…20 times longer. The longer run time is explained 
by the higher degrees of freedom in a graphical equal-
iser. The large optimisation time variation is due to 
differing in-situ responses causing variations in the 
run time because the optimisation continues until the 
required fitting tolerance is achieved. 

 

4. METHODS 

4.1. Statistical Data Analysis 

To assess the performance of the combination of 
optimisation algorithm and equalisation in the 
loudspeakers, the analysis compares the unequalised 
in-situ magnitude response to the equalised response. 

The third-octave smoothed magnitude response was 
calculated. The optimal room response control settings 
were calculated for each loudspeaker response. Statis-
tical data was recorded for each magnitude response 
measurement before and after equalisation to study 

how the objective quality was improved. Further sta-
tistical analysis is conducted on all measurements in 
three frequency bands (Table 1) “

LF

”, “

MF

” and 

HF

”, collectively called “

subbands

” and correspond-

ing roughly to the bandwidths for each driver in a 
three-way system. 

Table 1. Frequency band definitions the statistical data 
analysis: 

f

LF

 is the frequency of the lower –3 dB limit 

of the frequency range. 

 

Frequency Range Limit 

Bandwidth Name 

Low 

High 

Broadband 

f

LF

 15 

kHz 

LF 

f

LF

 400 

Hz 

MF 

400 Hz 

3.5 kHz 

HF  

3.5 kHz 

15 kHz 

 

For each loudspeaker, the broadband median pressure 
is calculated. Pressure deviations from this median are 
recorded within each subband and for the broadband. 
These deviations are then used to describe the proper-
ties and extent of deviations from a flat response. Me-
dians calculated for subbands, defined above, are re-
corded. The differences from the broadband median to 
subband medians are calculated and then used as an 
indicator for broadband balance of the frequency re-
sponse. Both statistical descriptors are recorded before 
and after equalisation for each frequency band and 
each equalisation method.  

The quartile difference and RMS deviation are calcu-
lated for the four loudspeaker categories determined 
by the type of built-in room response controls in the 
loudspeakers. Both the quartile difference and RMS 
deviation values represent two slightly different ways 
to look at the deviation from the median value of the 
distribution. The quartile values are more robust to 
outlier values while the RMS values include these ef-
fects.  

 

4.2.  Data Analysis Case Study  

Figure 5 in Appendix C shows the third-octave 
smoothed and unsmoothed in-situ response of a large 
soffit mounted system [5]. The measurement tech-
nique is detailed in [12,14]. 

 

4.2.1. Room Response Control Equalisation 

Appendix A shows a case example where the room 
response control settings are calculated according to 
the optimisation algorithm [12-14]. The equalisation 
target is a flat magnitude response, i.e. a straight line 
at 0 dB level. The loudspeaker’s passband (triangles) 
and the frequency band of equalisation (crosses) are 

Содержание response controls

Страница 1: ...t least 40 years an early example is 1 Equalisation is prevalent in professional sound reproduction such as recording studios mixing rooms and sound rein forcement In situ response equalisation is often im plemented using third octave equalisers which are normally set with the help of real time analysers This measurement and equalisation combination is cheap readily available and a relatively simp...

Страница 2: ...tudying the statistical properties of 67 in situ magni tude responses before and after equalisation 2 IN SITU EQUALISATION The room response controls were previously described in 12 14 A constant Q type 31 band DSP graphic equaliser 15 was constructed using bi quadratic transfer functions of the form 2 2 1 1 2 2 1 1 0 1 z a z a z b z b b z H 1 where the scaling of the transfer function is given by...

Страница 3: ...sponse control settings were calculated for each loudspeaker response Statis tical data was recorded for each magnitude response measurement before and after equalisation to study how the objective quality was improved Further sta tistical analysis is conducted on all measurements in three frequency bands Table 1 LF MF and HF collectively called subbands and correspond ing roughly to the bandwidth...

Страница 4: ...adband balance graphic equalisation is able to correct for local fea tures in the response Figure 7 but only with limited success Resonances due to room modes or construc tive interference due to reflections in the response cannot be corrected accurately when the frequencies do not coincide with the centre frequencies of third octave filter bands A good example of this can be seen at 600 Hz In the...

Страница 5: ...evels in Subbands Large Systems 6 4 2 0 2 4 6 8 LF MF HF LF MF HF LF MF HF Original Room Reponse Controls Graphic Equaliser Figure 1 Mean and standard deviation of subband median levels before and after room response control and graphic equalisation 5 2 Graphic Equalisation Appendix D Figures 9 13 depicts the use of the equaliser controls for each loudspeaker group The upper graph a shows how the ...

Страница 6: ...ow 0 dB indicates that graphic equalisation achieves a response closer to the target For all loud speaker models pooled together the room response controls improved the RMS deviation from 6 1 dB to 4 7 dB improvement 22 whereas graphic equalisa tion improved the RMS deviation to 1 8 dB im provement 70 The main improvement is seen at low frequencies The better performance by the graphic equaliser i...

Страница 7: ...ke to thank Louis Fielder for the question in a recent AES Conference in Denmark sparking this paper s content Mr Steve Fisher SCV London for the original inspirational idea for the optimiser and some of the measurements used in the statistical analysis Mr Olli Salmensaari Finnish Broadcasting Corporation for additional measure ments Mr Lars Morset Morset Sound Development and Genelec Oy 9 REFEREN...

Страница 8: ...al Commission Geneva 1995 18 The MathWorks MATLAB Optimisation Toolbox v 2 3 The MathWorks Inc Natick 2003 19 Moore B C J Glasberg B R Plack C J and Biswas A K The shape of the Ear s Temporal Win dow J Acoustical Soc America vol 83 pp 1102 1116 1988 Mar 20 Klark Technik http www klarkteknik com 2004 Feb 21 Toole F E Olive S E The Modification of Timbre by Resonances Perception and Measure ment J A...

Страница 9: ... 9 APPENDIX A ROOM RESPONSE CONTROL CASE STUDY STATISTICAL GRAPHS Figure 2 Case study optimisation results using room response control equalisation Figure 3 Case study statistical output box plot histogram and normal probability plot before upper and after lower optimised room response control equalisation ...

Страница 10: ...Control Equalisation 15 10 5 0 5 Broad LF MF HF RMS Deviation Change due to Room Response Control Equalisation 15 10 5 0 5 Broad LF MF HF Figure 4 Change in sound level deviation due to Room Response Control equalisation for each subband and the broadband quartile difference and RMS of deviation from the broadband median The error bar indicates the stan dard deviation ALL Small Two way Three way L...

Страница 11: ...uency Hz Gain dB Centre Frequency Hz Gain dB Centre Frequency Hz Gain dB Centre Frequency Hz Gain dB 20 1 6 200 0 7 2 000 0 0 20 000 0 0 25 6 6 250 0 0 2 500 0 1 32 7 7 315 0 0 3 150 0 0 40 1 4 400 0 0 4 000 0 0 50 2 1 500 0 2 5 000 0 0 63 8 2 630 1 3 6 300 0 0 80 3 3 800 0 0 8 000 0 0 100 0 0 1 000 0 0 10 000 0 0 125 0 0 1 250 0 0 12 500 0 0 160 0 9 1 600 0 0 16 000 0 0 Use of Graphic Equaliser 1...

Страница 12: ...6TH CONVENTION BERLIN GERMANY 2004 MAY 8 11 12 Figure 7 Case study optimisation results using graphical equalisation Figure 8 Case study statistical output box plot histogram and normal probability plot before upper and after lower optimised graphical equalisation ...

Страница 13: ...k 1 6k 2k 2 5k 3 2k 4k 5k 6 3k 8k 10k 12 5k 16k 20k 1 3 Octave Frequency Band Hz Level dB Figure 9a Use of the graphic equaliser for small 2 way systems including 0dB settings Use of Graphic Equaliser Small models excl 0dB settings 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 2 3 20 25 32 40 50 63 80 100 125 160 200 250 315 400 500 630 800 1k 1 25k 1 6k 2k 2 5k 3 2k 4k 5k 6 3k 8k 10k 12 5k 16k 20k 1 3 ...

Страница 14: ... 4k 5k 6 3k 8k 10k 12 5k 16k 20k 1 3 Octave Frequency Band Hz Level dB Figure 10a Use of the graphic equaliser for 2 way systems including 0dB settings Use of Graphic Equaliser 2 way models excl 0dB settings 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 2 3 20 25 32 40 50 63 80 100 125 160 200 250 315 400 500 630 800 1k 1 25k 1 6k 2k 2 5k 3 2k 4k 5k 6 3k 8k 10k 12 5k 16k 20k 1 3 Octave Frequency Band Hz...

Страница 15: ... 4k 5k 6 3k 8k 10k 12 5k 16k 20k 1 3 Octave Frequency Band Hz Level dB Figure 11a Use of the graphic equaliser for 3 way systems including 0dB settings Use of Graphic Equaliser 3 way models excl 0dB settings 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 2 3 20 25 32 40 50 63 80 100 125 160 200 250 315 400 500 630 800 1k 1 25k 1 6k 2k 2 5k 3 2k 4k 5k 6 3k 8k 10k 12 5k 16k 20k 1 3 Octave Frequency Band Hz...

Страница 16: ... 4k 5k 6 3k 8k 10k 12 5k 16k 20k 1 3 Octave Frequency Band Hz Level dB Figure 12a Use of the graphic equaliser for large systems including 0dB settings Use of Graphic Equaliser Large Models excl 0dB settings 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 2 3 20 25 32 40 50 63 80 100 125 160 200 250 315 400 500 630 800 1k 1 25k 1 6k 2k 2 5k 3 2k 4k 5k 6 3k 8k 10k 12 5k 16k 20k 1 3 Octave Frequency Band Hz...

Страница 17: ...2k 4k 5k 6 3k 8k 10k 12 5k 16k 20k 1 3 Octave Frequency Band Hz Level dB Figure 13a Use of the graphic equaliser for all systems including 0dB settings Use of Graphic Equaliser All Models excl 0dB settings 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 2 3 20 25 32 40 50 63 80 100 125 160 200 250 315 400 500 630 800 1k 1 25k 1 6k 2k 2 5k 3 2k 4k 5k 6 3k 8k 10k 12 5k 16k 20k 1 3 Octave Frequency Band Hz L...

Страница 18: ...Graphic Equalisation 15 10 5 0 5 Broad LF MF HF RMS Deviation Change due to Graphic Equalisation 15 10 5 0 5 Broad LF MF HF Figure 14 Change in sound level deviation due to graphic equalisation for each subband and the broadband quartile difference and RMS of deviation from the broadband median The error bar indicates the standard deviation ALL Small Two way Three way Large ALL Small Two way Three...

Страница 19: ...on Change between Equalisations 15 10 5 0 5 Broad LF MF HF Figure 15 The difference between the change in sound level deviation for the room response control and the graphic equalisation techniques for each subband and the broadband quartile difference and RMS of deviation from the broadband median are plotted A value below 0dB indicates that graphic equalisation achieves a response closer to the ...

Отзывы: