background image

GOLDBERG AND MÄKIVIRTA

 

AUTOMATED IN-SITU EQUALISATION

 

 

AES 23RD CONFERENCE, May 23-25, 2003 

Table 12. Use of available room response controls. 

Room Response Control 

Usage vs. 

availability 

% Usage 

Midrange Level 

27/33 

82% 

Treble Level 

22/33 

67% 

Bass Tilt 

37/67 

55% 

Treble Tilt 

11/37 

30% 

Bass Level 

  8/33 

24% 

Bass Roll-off 

10/67 

15% 

 
Appendix D gives the quartile difference and RMS 
deviations for each loudspeaker in the study, for the 
broadband and each subband. The quartile difference 
or RMS deviation after equalisation is subtracted from 
the same before equalisation. An improvement will 
produce a negative value of difference. Both the quar-
tile difference and RMS deviation values represent 
two slightly different ways to look at the deviation 
from the median value of the distribution. The quartile 
limits are more robust to outlier values while the RMS 
values include these effects. 
For small two-way systems (Figure 9-10), the main 
improvement is seen at low frequencies in four out of 
12 cases. In only one case is there is a significant im-
provement in the broadband flatness. 
The broadband flatness of the two-way systems is im-
proved in four (quartile data, Figure 11) or eight 

(RMS data, Figure 12) cases out of 22. An equal 
number of reductions and increases of low frequency 
quartile values can be seen. MF subband quartile val-
ues improve in one case and deteriorate in 5 cases and 
there are no changes in the HF subband. The flatness 
in the broadband and LF subband of the RMS devia-
tion data has improved indicating a reduction of out-
lier values. The MF and HF subbands show no 
changes or a slight increase of the RMS deviation. 
Three-way systems show a clear reduction in most 
cases of both the quartile difference (Figure 13) and 
RMS deviation (Figure 14) for the broadband and LF 
subband. Slight, and equal numbers of, increases and 
reductions are seen for MF and HF subbands. 
A similar trend is seen for the three large systems in-
cluded in this study (Figure 15-16). Mainly the LF 
subband flatness is improved and this is also reflected 
in the broadband improvement. 
Some of the responses appeared to become worse in 
the quartile difference and RMS deviation in the sub-
band analysis. This was not reflected in the broadband 
metrics, which indicates that the arbitrary

 

subband fre-

quency division introduced some of the error. Also, 
the cases where this happened suffered from severe 
anomalies within the pre-equalisation response due to 
extremely bad room acoustic conditions. The equalisa-
tion was not designed to compensate for this. 

 

Subband Median Levels - Small models

-3

-2

-1

0

1

2

3

4

5

LF

MF

HF

LF

MF

HF

Original

Equalised

Level, dB

Subband Median Levels - 2-way models

-3

-2

-1

0

1

2

3

4

5

LF

MF

HF

LF

MF

HF

Original

Equalised

Level, dB

Subband Median Levels - 3-way models

-3

-2

-1

0

1

2

3

4

5

LF

MF

HF

LF

MF

HF

Original

Equalised

Level, dB

Subband Median Levels - All Models

-3

-2

-1

0

1

2

3

4

5

LF

MF

HF

LF

MF

HF

Original

Equalised

Level, dB

 

Figure 3. Mean and standard deviation of subband median levels before and after equalisation. 
 
The subband median levels (Figure 3) illustrate the 
broadband frequency balance between the subbands. 
Loudspeaker loading from nearby boundaries is re-

flected in the LF subband median level before equali-
sation, especially in the often flush mounted three-
way models. The median level in the LF subband is 

Содержание Frequency Response Optimisatio

Страница 1: ...ce of calibrating active loud speakers Even with experienced system calibrators significant variance between calibrations can be seen Furthermore with a number of different people cali brating loudspeaker systems additional variance in results will occur For these reasons an automated calibration method was developed to ensure consis tency of calibrations Presented first in this paper is the discr...

Страница 2: ...al to significantly improve perceived sound quality The practical challenge is the selection of the best settings for the low order in situ equaliser Despite advances in psychoacoustics it is difficult to quantify what the listener actually perceives the sound quality to be or to optimise equalisation based on that evaluation 13 15 Because of this in situ equalisa tion typically attempts to obtain...

Страница 3: ...re determined by the crossover filters The bass tilt control compensates for a bass boost seen when the loudspeaker is loaded by large nearby boundaries 33 36 This typically happens when a loudspeaker is placed next to or mounted into an acoustically hard wall This filter is a first order shelv ing filter The bass roll off control compensates for a bass boost often seen at the very lowest frequenc...

Страница 4: ...her than using a least squares type objective function is that the bass roll off tends to assume maximum attenuation to minimise the RMS deviation This type of objective function does not yield the best setting as subjectively a loss of bass extension is perceived This stage of the optimiser algorithm takes six filtering steps three for small two way models 3 2 2 Midrange Level to Treble Level Rat...

Страница 5: ...tics of experienced calibration engineers The resulting num ber of filtering steps has been dramatically reduced for the larger systems Table 9 and even the relatively simple two way systems show a substantial improve ment when compared to the number of filtering steps needed by direct search method as summarised in Table 5 There are two main reasons for the improve ment the constraint of not allo...

Страница 6: ... there is also a 3 dB roll off with 50 Hz being down by 1 dB and 40 Hz by 2 dB Tolerance lines are set to 3 dB with additional leeway at low and high fre quencies 1 An example of the room equaliser settings output for the large system optimised in Figure 1 is shown in Figure 2 The optimised result is displayed in green and dark grey boxes The green boxes are room re sponse controls that should be ...

Страница 7: ...d tonal bal ance improvement This is indicated by a reduction of the median value differences 4 2 Example of Statistical Data Analysis Figure 7 in Appendix C shows a case example where room response control settings are calculated accord ing to the optimisation algorithm The equalisation target is a flat magnitude response straight line at 0 dB level The in situ frequency response of the loudspeak...

Страница 8: ...subbands show no changes or a slight increase of the RMS deviation Three way systems show a clear reduction in most cases of both the quartile difference Figure 13 and RMS deviation Figure 14 for the broadband and LF subband Slight and equal numbers of increases and reductions are seen for MF and HF subbands A similar trend is seen for the three large systems in cluded in this study Figure 15 16 M...

Страница 9: ...n the median level for the LF subband A similar outcome is noted sepa rately for each loudspeaker type However only in the three way systems is an improvement seen also in the MF and HF subband variance 25 to 75 Percentile Difference Change due to Equalisation All models 3 2 1 0 1 Broadband LF MF HF Level dB RMS Deviation Change due to Equalisation All models 5 4 3 2 1 0 1 Broadband LF MF HF Level...

Страница 10: ...d room response control settings The settings achieve im proved equalisation in the form of a smaller RMS de viation from the target response The improvement is not limited by the optimisation method but by the room response controls which are not intended to cor rect for narrow band deviations in the frequency re sponse Examples of these are response variations re sulting from acoustic issues suc...

Страница 11: ...Thesis at the Helsinki University of Technol ogy 41 8 REFERENCES 1 Genelec Oy http www genelec com 2003 Feb 2 Walker R Equalisation of Room Acoustics and Adaptive Systems in the Equalisation of Small Rooms Acoustics Proc 15th Int Conf paper 15 005 1998 Oct 3 Cox T J and D Antonio P Determining Op timum Room Dimensions for Critical Listening Envi ronments A New Methodology presented in 110th Conv A...

Страница 12: ...2001 Sep 29 Mäkivirta A Antsalo P Karjalainen M and Välimäki V Low Frequency Modal Equalisation of Loudspeaker Room Responses presented in 111th Conv Audio Eng Soc preprint 5480 2001 Sept 30 Karjalainen M Esquef P A A Antsalo P Mäkivirta A and Välimäki V Frequency Zooming ARMA Modelling of Resonant and Reverberant Sys tems J Audio Eng Soc vol 50 pp 1012 1029 2002 Dec 31 Moore B C J Glasberg B R Pl...

Страница 13: ...User Inputs Model Database Stored Measurement Microphone Compensation CTRL M Measurement Dump Reset Graph and Outputs Get Model Number Apply Mic Compensation Remove DC Window FFT and Smooth Load Impulse Response Set DIPtimisation Range Display Original Freq Response Display Target Response Calculate Target Resp Stored Measurement CLOSE DIPtimiser 1 2 Figure 5 Software flow chart part 1 CLOSE Set F...

Страница 14: ...5 2003 14 Is Large System Is Small System Load Filters Model Filters Preset BRO Find ML TL Ratio Set BL BT wrt ML TL Reset BRO Set TT Display Final Tone Control Settings Display Final Frequency Response Set BT Is 3 way System 1 2 Figure 5 continued Software flow chart part 2 Y N N Y ...

Страница 15: ...GOLDBERG AND MÄKIVIRTA AUTOMATED IN SITU EQUALISATION AES 23RD CONFERENCE May 23 25 2003 15 APPENDIX B SOFTWARE GRAPHICAL USER INTERFACE Figure 6 Software graphical user interface at start up ...

Страница 16: ... AND MÄKIVIRTA AUTOMATED IN SITU EQUALISATION AES 23RD CONFERENCE May 23 25 2003 16 APPENDIX C CASE EXAMPLE STATISTICAL GRAPHS Figure 7 Case example optimisation results Figure 8 Case example statistical output ...

Страница 17: ...5 4 0 3 5 3 0 2 5 2 0 1 5 1 0 0 5 0 0 0 5 1029A 1029A 1029A 1029A 1029A 1029A 1029A 1029A 1029A 1029A 1029A 1029A Level dB Low Frequency 25 to 75 Percentile Difference Before Equalisation 0 2 4 6 8 10 12 1029A 1029A 1029A 1029A 1029A 1029A 1029A 1029A 1029A 1029A 1029A 1029A Level dB Low Frequency 25 to 75 Percentile Difference After Equalisation 0 2 4 6 8 10 12 1029A 1029A 1029A 1029A 1029A 1029A...

Страница 18: ...2 0 1 5 1 0 0 5 0 0 0 5 1029A 1029A 1029A 1029A 1029A 1029A 1029A 1029A 1029A 1029A 1029A 1029A Level dB High Frequency 25 to 75 Percentile Difference Before Equalisation 0 2 4 6 8 10 12 1029A 1029A 1029A 1029A 1029A 1029A 1029A 1029A 1029A 1029A 1029A 1029A Level dB High Frequency 25 to 75 Percentile Difference After Equalisation 0 2 4 6 8 10 12 1029A 1029A 1029A 1029A 1029A 1029A 1029A 1029A 102...

Страница 19: ...to Equalisation 7 6 5 4 3 2 1 0 1 2 1029A 1029A 1029A 1029A 1029A 1029A 1029A 1029A 1029A 1029A 1029A 1029A Level dB Low Frequency RMS Deviation Before Equalisation 0 2 4 6 8 10 1029A 1029A 1029A 1029A 1029A 1029A 1029A 1029A 1029A 1029A 1029A 1029A Level dB Low Frequency RMS Deviation After Equalisation 0 2 4 6 8 10 1029A 1029A 1029A 1029A 1029A 1029A 1029A 1029A 1029A 1029A 1029A 1029A Level dB ...

Страница 20: ...Equalisation 7 6 5 4 3 2 1 0 1 2 1029A 1029A 1029A 1029A 1029A 1029A 1029A 1029A 1029A 1029A 1029A 1029A Level dB High Frequency RMS Deviation Before Equalisation 0 2 4 6 8 10 1029A 1029A 1029A 1029A 1029A 1029A 1029A 1029A 1029A 1029A 1029A 1029A Level dB High Frequency RMS Deviation After Equalisation 0 2 4 6 8 10 1029A 1029A 1029A 1029A 1029A 1029A 1029A 1029A 1029A 1029A 1029A 1029A Level dB H...

Страница 21: ...ence Before Equalisation 0 2 4 6 8 10 12 1030A 1030A 1031A 1031A 1031A 1031A 1031A 1031A 1031A 1032A 1032A Level dB Low Frequency 25 to 75 Percentile Difference Change due to Equalisation 4 5 4 0 3 5 3 0 2 5 2 0 1 5 1 0 0 5 0 0 0 5 1030A 1030A 1031A 1031A 1031A 1031A 1031A 1031A 1031A 1032A 1032A Level dB Broadband 25 to 75 Percentile Difference After Equalisation 0 2 4 6 8 10 12 1030A 1030A 1031A...

Страница 22: ... 3 0 2 5 2 0 1 5 1 0 0 5 0 0 0 5 1030A 1030A 1031A 1031A 1031A 1031A 1031A 1031A 1031A 1032A 1032A Level dB High Frequency 25 to 75 Percentile Difference Before Equalisation 0 2 4 6 8 10 12 1030A 1030A 1031A 1031A 1031A 1031A 1031A 1031A 1031A 1032A 1032A Level dB High Frequency 25 to 75 Percentile Difference After Equalisation 0 2 4 6 8 10 12 1030A 1030A 1031A 1031A 1031A 1031A 1031A 1031A 1031A ...

Страница 23: ...ange due to Equalisation 7 6 5 4 3 2 1 0 1 2 1030A 1030A 1031A 1031A 1031A 1031A 1031A 1031A 1031A 1032A 1032A Level dB Low Frequency RMS Deviation Before Equalisation 0 2 4 6 8 10 1030A 1030A 1031A 1031A 1031A 1031A 1031A 1031A 1031A 1032A 1032A Level dB Low Frequency RMS Deviation After Equalisation 0 2 4 6 8 10 1030A 1030A 1031A 1031A 1031A 1031A 1031A 1031A 1031A 1032A 1032A Level dB Low Frequ...

Страница 24: ...e due to Equalisation 7 6 5 4 3 2 1 0 1 2 1030A 1030A 1031A 1031A 1031A 1031A 1031A 1031A 1031A 1032A 1032A Level dB High Frequency RMS Deviation Before Equalisation 0 2 4 6 8 10 1030A 1030A 1031A 1031A 1031A 1031A 1031A 1031A 1031A 1032A 1032A Level dB High Frequency RMS Deviation After Equalisation 0 2 4 6 8 10 1030A 1030A 1031A 1031A 1031A 1031A 1031A 1031A 1031A 1032A 1032A Level dB High Frequ...

Страница 25: ...tion 0 2 4 6 8 10 12 S30D S30D S30D S30D 1037B 1037B 1037B 1037B 1037B 1038A 1038A 1038A 1038A 1038A 1039A Level dB Low Frequency 25 to 75 Percentile Difference Change due to Equalisation 4 5 4 0 3 5 3 0 2 5 2 0 1 5 1 0 0 5 0 0 0 5 S30D S30D S30D S30D 1037B 1037B 1037B 1037B 1037B 1038A 1038A 1038A 1038A 1038A 1039A Level dB Broadband 25 to 75 Percentile Difference After Equalisation 0 2 4 6 8 10 ...

Страница 26: ... 0 5 0 0 0 5 S30D S30D S30D S30D 1037B 1037B 1037B 1037B 1037B 1038A 1038A 1038A 1038A 1038A 1039A Level dB High Frequency 25 to 75 Percentile Difference Before Equalisation 0 2 4 6 8 10 12 S30D S30D S30D S30D 1037B 1037B 1037B 1037B 1037B 1038A 1038A 1038A 1038A 1038A 1039A Level dB High Frequency 25 to 75 Percentile Difference After Equalisation 0 2 4 6 8 10 12 S30D S30D S30D S30D 1037B 1037B 10...

Страница 27: ...tion 7 6 5 4 3 2 1 0 1 2 S30D S30D S30D S30D 1037B 1037B 1037B 1037B 1037B 1038A 1038A 1038A 1038A 1038A 1039A Level dB Low Frequency RMS Deviation Before Equalisation 0 2 4 6 8 10 S30D S30D S30D S30D 1037B 1037B 1037B 1037B 1037B 1038A 1038A 1038A 1038A 1038A 1039A Level dB Low Frequency RMS Deviation After Equalisation 0 2 4 6 8 10 S30D S30D S30D S30D 1037B 1037B 1037B 1037B 1037B 1038A 1038A 10...

Страница 28: ...n 7 6 5 4 3 2 1 0 1 2 S30D S30D S30D S30D 1037B 1037B 1037B 1037B 1037B 1038A 1038A 1038A 1038A 1038A 1039A Level dB High Frequency RMS Deviation Before Equalisation 0 2 4 6 8 10 S30D S30D S30D S30D 1037B 1037B 1037B 1037B 1037B 1038A 1038A 1038A 1038A 1038A 1039A Level dB High Frequency RMS Deviation After Equalisation 0 2 4 6 8 10 S30D S30D S30D S30D 1037B 1037B 1037B 1037B 1037B 1038A 1038A 103...

Страница 29: ...evel dB Low Frequency 25 to 75 Percentile Difference Before Equalisation 0 2 4 6 8 10 12 1036A 1036A 1036A Level dB Low Frequency 25 to 75 Percentile Difference Change due to Equalisation 4 5 4 0 3 5 3 0 2 5 2 0 1 5 1 0 0 5 0 0 0 5 1036A 1036A 1036A Level dB Broadband 25 to 75 Percentile Difference After Equalisation 0 2 4 6 8 10 12 1036A 1036A 1036A Level dB Low Frequency 25 to 75 Percentile Diff...

Страница 30: ...ifference Change due to Equalisation 4 5 4 0 3 5 3 0 2 5 2 0 1 5 1 0 0 5 0 0 0 5 1036A 1036A 1036A Level dB High Frequency 25 to 75 Percentile Difference Before Equalisation 0 2 4 6 8 10 12 1036A 1036A 1036A Level dB High Frequency 25 to 75 Percentile Difference After Equalisation 0 2 4 6 8 10 12 1036A 1036A 1036A Level dB High Frequency 25 to 75 Percentile Difference Change due to Equalisation 4 ...

Страница 31: ... 1036A 1036A Level dB Broadband RMS Deviation Change due to Equalisation 7 6 5 4 3 2 1 0 1 2 1036A 1036A 1036A Level dB Low Frequency RMS Deviation Before Equalisation 0 2 4 6 8 10 1036A 1036A 1036A Level dB Low Frequency RMS Deviation After Equalisation 0 2 4 6 8 10 1036A 1036A 1036A Level dB Low Frequency RMS Deviation Change due to Equalisation 7 6 5 4 3 2 1 0 1 2 1036A 1036A 1036A Level dB Fig...

Страница 32: ...036A 1036A Level dB Midrange RMS Deviation Change due to Equalisation 7 6 5 4 3 2 1 0 1 2 1036A 1036A 1036A Level dB High Frequency RMS Deviation Before Equalisation 0 2 4 6 8 10 1036A 1036A 1036A Level dB High Frequency RMS Deviation After Equalisation 0 2 4 6 8 10 1036A 1036A 1036A Level dB High Frequency RMS Deviation Change due to Equalisation 7 6 5 4 3 2 1 0 1 2 1036A 1036A 1036A Level dB Fig...

Отзывы: