background image

©2002 Fairchild Semiconductor Corporation

Application Note 7502 Rev. A1

Turn-On 

State 1: MOS Off, JFET Off 

I

PK1

 = V

G

/R

O

State 2: MOS Active, JFET Active 

I

PK2

 = (V

G

 - V

GS(TH)

)/R

O

State 3: MOS Active, JFET Saturated 

I

PK3

 = (V

G

 - V

G(SAT)

)/R

O

Turn-Off 

State 4: MOS Saturated, JFET Saturated 

I

PK4

 = V

G

/R

O

State 5: MOS Active, JFET Saturated 

I

PK5

 = V

G(SAT)

/R

O

State 6: MOS Active, JFET Active 

I

PK6

 = V

G(SAT)

/R

O

The equivalent circuit of Figure A-1 predicts that: 

dV

D

/dt = (-g

M

R

L

(V

G

 - V

GS(TH)

)e

-t/T1

) /T1

where T1 = R

O

C

GS

 + (1 + g

M

/g

MJ

)R

O

C

X

Note that g

M

R

L

(V

G

 - V

GS(TH)

) is usually an order of magnitude

greater than V

DD

, indicating that the drain voltage is discharg-

ing toward a very large negative value. The device operation,
then, is on the early, almost linear, portion of the exponential,
where e

-t/T1

 approximates unity. The drain current of Figure A-

2, and hence the drain voltage, does indeed exhibit a linear
decrease with time.

 Thus, for state 2: 

where I

PK2

 = (V

G

 - V

GS(TH)

)/R

O

State 3: Mos Active, JFET Saturated

Because of the Miller effect, the gate voltage and, hence, the
gate current, is almost constant during the tail time. The
equivalent circuit then predicts: 

State 4: Mos Saturated, JFET Saturated (Turn-off)

Both equivalent-circuit generators are short circuits, and the
gate drive is discharging C

X

 in parallel with C

GS

 through R

O

t = R

O

(C

GS

 + C

X

) ln[V

G

/V

G(SAT)

I

PK4

 = V

G

/R

O

State 5: Mos Active, JFET Saturated

The JFET current generator V

x

g

mJ

, is operative.

I

PK5

 = V

G(SAT)

/R

O

State 6: Mos Active, JFET Active

The Miller effect is now reduced by the activation of V

G

g

MJ

,

and the equivalent circuit predicts:

I

PAK6

 = V

G(SAT)

/R

O

Appendix B - Estimating R

O

 for Some

Typical Gate-Drive Circuits

Case 1: Typical Pulse-Generator Drive, Figure B-1

FIGURE B-1.

TYPICAL PULSE-GENERATOR DRIVE CIRCUIT

Turn-On and Turn-Off

R

O

 = R

GEN

R

GS

/(R

GEN

 + R

GS

)

For the typical case where R

GEN

 = 50

, and a coaxial-cable

termination of 50 ohms, R

O

 = 25

 and V

G

 = V

GEN

/2.

Case 2: Voltage-Follower Gate Drive, Figure B-2

FIGURE B-2. VOLTAGE-FOLLOWER GATE-DRIVE CIRCUIT

Turn-On 

R

O

 is approximately equal to 1/g

M

 for R

S

 very much

greater than 1/g

M

.

gm = transconductance of driving MOSFET transistor.

Turn Off

R

O

 = R

S

t =

[V

DD

 - V

DK

][C

GS

 + C

X

(1 + g

M

/g

MJ

)]

g

M

R

L

 I

PK2

dV

D

=

g

M

R

L

l

G

=

l

G

dt

C

GS

 + (1 + g

M

R

L

)C

X

C

X

l

G

 = I

PK3

 = (V

G

 - V

G(SAT)

)/R

O

and

t =

(V

DK

 - V

D[SAT]

)C

x

I

PK3

t =

[V

DK

 - V

D[SAT]

)C

X

I

PK5

t =

[V

DD

 - V

DK

][C

GS

 + C

X

(1 + g

M

/g

MJ

)]

g

M

R

L

 I

PAK6

V

GEN

R

GEN

V

G

V

DD

R

L

R

GS

+

R

S

V

DD

R

L

Application Note 7502

Содержание SEMICONDUCTOR AN-7502

Страница 1: ...nds Device Models The keystone of an understanding of power MOSFET switching performance is the realization that the active device is bimodal and must be described using a model that accounts for the...

Страница 2: ...tate 1 MOS Off JFET Off In a power MOSFET device no drain current will flow until the device s gate threshold voltage Vgs TH is reached Dur ing this time the gate s current drive is only charging the...

Страница 3: ...t5 VDK VD SAT Cx lG State 4 MOS Saturated JFET Saturated Turn Off In this state in addition to gMJVX being shorted the gMVG cur rent generator is shorted and IG is occupied with charging CX and CGS in...

Страница 4: ...switching time versus 1 RO to be of the same form as those obtained for a step current drive This is exactly the case as Figure 10 is merely a vari ation of Figure 8 Using the relationships of Table 1...

Страница 5: ...complexity FIGURE 10 CONSTANT GATE VOLTAGE SWITCHING TIME Using the Characterization Curve Figure 9 To estimate the switching times for an RFM15N15 power MOSFET under the conditions VG 10V VDD 75V RO...

Страница 6: ...and the 90 level by another Device comparisons based on the classical switching definition can be very misleading Appendix A Analysis for Resistive Step Voltage Inputs Step Voltage Gate Drive To obtai...

Страница 7: ...time The equivalent circuit then predicts State 4 Mos Saturated JFET Saturated Turn off Both equivalent circuit generators are short circuits and the gate drive is discharging CX in parallel with CGS...

Страница 8: ...on Source Gate Drive Figure B 3 FIGURE B 3 COMMON SOURCE GATE DRIVE CIRCUIT Turn On RO RD drain to ground capacitance of driving device adds to CGS of driven MOSFET Turn Off RO rDS ON of driving MOSFE...

Страница 9: ...ife support device or system or to affect its safety or effectiveness PRODUCT STATUS DEFINITIONS Definition of Terms Datasheet Identification Product Status Definition Advance Information Preliminary...

Отзывы: