background image

©2002 Fairchild Semiconductor Corporation

Application Note 7502 Rev. A1

For peak gate voltages other than 10 volts, and load resis-
tances other than BV

DSS

/I

D(MAX)

, the equations of Table 1

may be used in conjunction with slope estimates from the
characterization curves for C

X

 and C

GS

 + C

X

(1 + g

M

/g

MJ

) at

the appropriate drain-current level.

Characterization-Curve Limits

The switching-time range over which the characterization can be
applied is very impressive. For gate currents of the order of
microamperes, device dissipation is the limiting factor. For gate
currents of the order of amperes, the device response will be
slowed by gate propagation delay. This delay, of course,
degrades the linear switching relationship to gate current. How-
ever, as Figure 12 graphically shows, the characterization is valid
across five decades of gate current and switching time, allowing
all but a very few switching applications to be described by the
characterization curves of Figure 9. 

FIGURE 12.

FIVE DECADES OF LINEAR RESPONSE

Conclusions

The viability of the proposed characterization curves using con-
stant current has been demonstrated and the limits of applica-
tion defined. The existence of a vertical JFET in a power
MOSFET makes data-sheet capacitances of little use for esti-
mating switching times. The classical method of defining
switching time by 10% and 90% is a poor representation for
power MOSFETs because of the dual-slope nature of the drain
waveforms. Switching influences are masked because the 10%
level is controlled by one mechanism and the 90% level by
another. Device comparisons based on the classical switching
definition can be very misleading. 

Appendix A - Analysis for Resistive Step 
Voltage Inputs

Step Voltage Gate Drive

To obtain the necessary relationships, six device switching

states must be examined using the same device equivalent
circuit as was used for the constant-gate-current case, but
with the forcing function replaced wIth a step voltage with
internal resistance R

O

, Figure A-1.

FIGURE A-1.

POWER MOSFET EQUIVALENT CIRCUIT

State 1: Mos Off, JFET Off

As before, both current generators are open circuits, reducing
the equivalent circuit to simply charging C

ISS

 through R

O

State 2: Mos Active, JFET Active

Before proceeding, it is wise to examine an actual device
response and make use of available simplifications. Figure A-2
shows i

G

(t) and i

D

(t) for a typical power MOSFET driven by a

step gate voltage. For truly resistive switching, realize that these
waveforms are only mirror images of their voltage counterparts
v

G

(t) and v

D

(t). Using Figure A-2, applicable gate currents for

each of the device states may be listed.

FIGURE A-2. i

G

(t) AND i

D

(t) FOR A TYPICAL POWER MOSFET 

DRIVEN BY A STEP GATE VOLTAGE

10

4

10

2

10

0

10

-2

10

0

10

2

10

4

RFM15N15

t

D

(OFF)

t

R

t

F

t

D

(ON)

GATE CURRENT (I

G

) - MICROAMPERES

T

IME

(t) - 

M

IC

R

OS

E

C

ON

D

S

10

3

10

1

10

-1

10

1

10

3

10

5

10

6

LEGEND

V

GS

- Gate Voltage

C

DS

- Drain Source Capacitance

V

X

- JFET Driving Voltage g

M

- MOSFET Transconductance

V

D

- Drain Voltage

g

MJ

- JFET Transconductance

C

GS

- Gate Source

Capacitance

R

L

- Drain Load Resistance

C

X

- MOSFET Feedback 

Capacitance

I

G

- Constant Current Amplitude

t =

R

O

C

ISS

In(1/(1 - V

GS(TH)

/V

G

)]

GATE

C

DS

SOURCE

DRAIN

C

X

V

GS

V

G

g

MJ

 V

X

R

L

C

GS

g

M

 V

G

V

D

V

X

R

O

I

PK1

I

PK2

I

PK3

I

PK4

I

PK5

I

PK6

CURRENT

TIME

i

D

(t)

i

G

(t)

Application Note 7502

Содержание SEMICONDUCTOR AN-7502

Страница 1: ...nds Device Models The keystone of an understanding of power MOSFET switching performance is the realization that the active device is bimodal and must be described using a model that accounts for the...

Страница 2: ...tate 1 MOS Off JFET Off In a power MOSFET device no drain current will flow until the device s gate threshold voltage Vgs TH is reached Dur ing this time the gate s current drive is only charging the...

Страница 3: ...t5 VDK VD SAT Cx lG State 4 MOS Saturated JFET Saturated Turn Off In this state in addition to gMJVX being shorted the gMVG cur rent generator is shorted and IG is occupied with charging CX and CGS in...

Страница 4: ...switching time versus 1 RO to be of the same form as those obtained for a step current drive This is exactly the case as Figure 10 is merely a vari ation of Figure 8 Using the relationships of Table 1...

Страница 5: ...complexity FIGURE 10 CONSTANT GATE VOLTAGE SWITCHING TIME Using the Characterization Curve Figure 9 To estimate the switching times for an RFM15N15 power MOSFET under the conditions VG 10V VDD 75V RO...

Страница 6: ...and the 90 level by another Device comparisons based on the classical switching definition can be very misleading Appendix A Analysis for Resistive Step Voltage Inputs Step Voltage Gate Drive To obtai...

Страница 7: ...time The equivalent circuit then predicts State 4 Mos Saturated JFET Saturated Turn off Both equivalent circuit generators are short circuits and the gate drive is discharging CX in parallel with CGS...

Страница 8: ...on Source Gate Drive Figure B 3 FIGURE B 3 COMMON SOURCE GATE DRIVE CIRCUIT Turn On RO RD drain to ground capacitance of driving device adds to CGS of driven MOSFET Turn Off RO rDS ON of driving MOSFE...

Страница 9: ...ife support device or system or to affect its safety or effectiveness PRODUCT STATUS DEFINITIONS Definition of Terms Datasheet Identification Product Status Definition Advance Information Preliminary...

Отзывы: