EPC EPC9129 Скачать руководство пользователя страница 6

QUICK START GUIDE

 6   |                                                                                                 |    EPC – EFFICIENT POWER CONVERSION CORPORATION   |   

WWW.EPC-CO.COM

   |   COPYRIGHT 2018

Demonstration System EPC9129

2. With power off, connect the main input power supply bus +V

IN

 to the 

bottom pin of JP1 and the ground to the ground connection J1 as 
shown in figure 8.

3. With power off, connect the control input power supply bus to J1. Note 

the polarity of the supply connector. This is used to power the gate 

drivers and logic circuits.

4.  Make sure all instrumentation is connected to the system.
5.  Turn on the control supply – make sure the supply is 19 V range.
6.  Turn on the main supply voltage to the required value (it is   recommended 

to start at 0 V and do not exceed the absolute maximum voltage of 80 V).

7.  Once operation has been confirmed, adjust the main supply voltage 

within the operating range and observe the output voltage, efficiency 
and other parameters on both the amplifier and device boards.

8.  For shutdown, please follow steps in the reverse order. Start by reducing 

the main supply voltage to 0 V followed by steps 6 through 2.

NOTE

1. When measuring the high frequency content switch-node (Source Coil Voltage), care 

must be taken to avoid long ground leads. An oscilloscope probe connection (preferred 

method) has been built into the board to simplify the measurement of the Source Coil 

Voltage (shown in figure 11).

2. AVOID using a Lab Benchtop programmable DC as the load for the category 3 and 

category 5 device boards. These loads have low control bandwidth and will cause 

the EPC9129 system to oscillate at a low frequency and may lead to failure. It is 

recommended to use a fixed low inductance resistor as an initial load. Once a design 

matures, a post regulator, such as a Buck converter, can be used.

Go to 

www.epc-co.com

 periodically for updates on new wireless power device demon-

stration boards capable of delivering a regulated output.

THERMAL CONSIDERATIONS

The EPC9129 demonstration system showcases the EPC8010, EPC2019, 

EPC2038, and EPC2016C in a wireless energy transfer application. 

Although the electrical performance surpasses that of traditional 

silicon devices, their relatively smaller size does magnify the thermal 

management requirements. The operator must observe the temperature 

of the gate driver and eGaN FETs to ensure that both are operating within 
the thermal limits as per the datasheets.

NOTE. The EPC9129 demonstration system has limited current and thermal protection 

only when operating off the Pre-Regulator. When bypassing the pre-regulator there is no 

current or thermal protection on board and care must be exercised not to over-current or 

over-temperature the devices. Excessively wide coil coupling and load range variations 

can lead to increased losses in the devices.

Pre-Cautions
The EPC9129 demonstration system has no enhanced protection 
systems and therefore should be operated with caution. Some specific 
precautions are:

1. Never operate the EPC9129 system with a device board that is AirFuel 

compliant as this system does not communicate with the device 
to correctly setup the required operating conditions and doing so 
can lead to failure of the device board. Please contact EPC should 
operating the system with an AirFuel compliant device be required 
to obtain instructions on how to do this. Please contact EPC at  

[email protected]

 should the tuning of the coil be required to suit 

specific conditions so that it can be correctly adjusted for use with the 
ZVS class-D amplifier.

2. There is no heat-sink on the devices and during experimental 

evaluation it is possible present conditions to the amplifier that may 
cause the devices to overheat. Always check operating conditions and 
monitor the temperature of the EPC devices using an IR camera.

3. Never connect the EPC9512 amplifier board into your VNA in an  

attempt to measure the output impedance of the amplifier. Doing so 
will severely damage the VNA.

 Figure 3: Diagram of EPC9512 ZVS class-D amplifier circuit.

 Figure 2: Block diagram of the EPC9512 wireless power amplifier.

+

V

AMP 

Q

1_a 

L

ZVS12 

Q

2_a 

Q

1_b

Q

2_b

L

ZVS2 

C

ZVS2 

C

ZVS1 

L

ZVS1 

Coil connection

 

Single 

Ended 

Operation 

Jumper

 

Pre-regulator

Pre-regulator 

jumper

 

JP1

 

J1

 

V

IN 

Bypass mode 

connection

 

ZVS class D 

SEPIC

Pre-regulator

amplifier

19 V

DC

4 V

DC

80 V

DC

Cs

Coil

X

Iamp

Pamp

Vamp

Icoil

Combiner

Control reference signal

Icoil

Содержание EPC9129

Страница 1: ...Demonstration System EPC9129 Quick Start Guide 6 78MHz 33WClass4WirelessPowerSystem usingEPC8010 EPC2038 EPC2019 EPC2016C Revision 1 0...

Страница 2: ...r based on the limits of 3 parameters coil current DC power delivered to the ZVS class D amplifier and maximum operating voltage of the ZVS class D amplifier The coil current has the lowest priority f...

Страница 3: ...fier supply after removing the jumper at location JP1 and inserting the jumper into location JP50 to disable the pre regulator followed by connecting the main positive supply to the bottom pin of JP1...

Страница 4: ...in the single ended mode Using an external pull down with floating collector drain connection will have the same effect The external transistor must be capable of sinking 25 mA and withstand at least...

Страница 5: ...nd 2 A for the EPC9514 The EPC9513 and EPC9514 device boards come equipped with Kelvin connections for easy and accurate measurement of the un regulated and regulated output voltages The rectified vol...

Страница 6: ...raditional silicon devices their relatively smaller size does magnify the thermal managementrequirements Theoperatormustobservethetemperature ofthegatedriverandeGaNFETstoensurethatbothareoperatingwith...

Страница 7: ...onnection Tuning network Class 3 coil f 6 78 MHz ON OFF KEY modulation Figure 5 Schematic diagram of the EPC9513 and EPC9514 demo board Load Device coil Un Regulated DC output Tuning Network Rectifier...

Страница 8: ...V V Figure 8 Proper connection and measurement setup for the amplifier board 17 24 VDC VIN supply note polarity Source coil connection External oscillator Switch node main oscilloscope probe Switch no...

Страница 9: ...on Q1turn off VAMP 0 time ZVS Partial ZVS ZVS diode conduction Q1turn on Q2turn off VAMP 0 time ZVS Partial ZVS ZVS diode conduction Figure 10 AirFuel Category 5 device board Disable Regulator Coil Co...

Страница 10: ...ed 10 nF 100 V TDK C1608X7R2A103K080AA 20 3 C90 C91 C92 1 F 25 V W rth 885012206076 21 2 C131 C221 1 nF 50 V Murata GRM1555C1H102JA01D 22 2 Czvs1 Czvs2 1 F 50 V W rth 885012207103 23 1 D1 25 V 11 A Li...

Страница 11: ...X 75 1 R53 12 Panasonic ERJ 2RKF12R0X 76 1 R54 0 Yageo RC0402JR 070RL 77 1 R55 23 2 k Panasonic ERJ 2RKF2322X 78 1 R57 160 k Panasonic ERJ 3EKF1603V 79 1 R58 33 k Panasonic ERJ 3GEYJ333V 80 1 R60 20 m...

Страница 12: ...gory 3 Coil NuCurrent NC20 R070L03E 079 063 0R71 24 1 J3 1 Male Vert SMD 2 x 2 Amphenol FCI 95278 101A04LF 25 2 L60 L61 Inductor 22 H 4 3 A Vishay Dale IHLP3232DZER220M11 26 1 L90 Inductor 10 H 150 mA...

Страница 13: ...mW Nexperia BZX84 C2V7 215 21 1 D86 LED 0603 Red Lite On LTST C193KRKT 5A 22 1 D87 43 V 250 mW Nexperia BZX84 C43 215 23 1 D88 44 V 51 6 A Littelfuse SMDJ36A 24 1 GP60 1 Male Vert W rth 61300111121 25...

Страница 14: ...peration Only Pre Regulator Disconnect SMD probe loop 1 TP1 SMD probe loop 1 TP2 Vamp VAMP 5 V G ND Lin OUT Hin a EPC9512_SE_ZVSclassD_Rev 3_1 SchDoc 500nH Lzvs1 500 nH Lzvs2 TBD Lzvs12 EMP TY 1 F 50...

Страница 15: ...4 7 F 100 V C65 10 H 150 mA L80 Isns Vout Comp 1 2 R30 EMP TY Icoil 100nF 100 V C50 10 1 2 R50 1 1 Male Vert GP60 1 ProbeHole PH60 20 1 2 R82 100 nF 16 V C81 100nF 100 V C30 22pF 50 V C44 22 pF 50 V C...

Страница 16: ...3U40 22 nF 25 V C3 GND 5 V OUT Vamp Out GU GL Out 10 nF 100 V 10 nF 100 V 10 nF 100 V C11 C12 Vamp Vamp Vamp VAMP GND Hin Lin Hin Lin 1 ProbeHole PH1 Ground Post 1 1 Male Vert GP1 4 7 1 2 R4 100 nF 16...

Страница 17: ...35 V C64 0 1 2 R54 100 V 3 A D60 STPS3H100UF Vfdbk Isns C63 6 2 3 EP 4 5 LDO VREF VSS 1 VDD U90 UCC27611DRV Isns Isns Isns Isns 10 H 150 mA L90 Isns Comp 100 nF 100 V C50 10 1 2 R50 1 GP60 1 ProbeHol...

Страница 18: ...6 V C91 22 pF 50 V C92 5VGD 5VGD 1 F 25 V C55 2 49 M1 1 2 R57 150 k 1 1 2 R58 UVLO 7 5 Bias Osc 4 8 Pgnd 1 275 V Cnt FA Sync SD FB Comp 10 6 Agnd Isens Vin 3 1 DR 2 9 UVLO U50 LM3481MM NOPB 44V 51 6 A...

Страница 19: ...e online com EPC would like to acknowledge Johanson Technology www johansontechnology com for their support of this project Information on the capacitors used in this kit can be found at http www joha...

Страница 20: ...rcompliancewiththeEuropeanUniondirectiveonelectromagneticcompatibilityoranyothersuchdirectivesorregulations Asboard builds are at times subject to product availability it is possible that boards may c...

Отзывы: