EPC EPC9129 Скачать руководство пользователя страница 4

QUICK START GUIDE

 4   |                                                                                                 |    EPC – EFFICIENT POWER CONVERSION CORPORATION   |   

WWW.EPC-CO.COM

   |   COPYRIGHT 2018

Demonstration System EPC9129

The pre-regulator can also be disabled in a similar manner as the 

oscillator using JP50. However, note that this connection is floating 

with respect to the ground so removing the jumper for external 

connection requires a floating switch to correctly control this function. 

Refer to the datasheet of the controller IC and the schematic in this 

quick start guide for specific details.
The ZVS timing adjust circuits for the ZVS class-D amplifiers are each 

independently settable to ensure highest possible efficiency setting 

and includes separate ZVS tank circuits. 
Additional protection features
An undervoltage-lockout circuit has been implemented for the input 

voltage (V

IN

). The amplifier board will not start unless V

IN

 reaches its 

minimum required value specified in table 1.
A clamp diode also protects the board from V

IN

 over-voltage for a 

brief period and accidental reverse polarity connection with up to  

11 A current protection. 
On-Off-Key (OOK) modulation
On-Off-Key (OOK) modulation (as illustrated in figure 6) can be 

implemented by applying the modulation signal at J76. It is 

compatible with 5 V logic only. When the signal is high, the power 

stage functions normally; when the signal is low, the gate drive signal 

of one half-bridge is shut off. Therefore, for optimal performance, 

the signal should be synchronized with the oscillator signal. The 

modulation signal should also change state between the oscillator 

states and must complete an even number of clock cycles. Failure 

to follow this will lead to DC voltage shift on the ZVS capacitor (C

zvs

and other harmonic generation issues in the amplifier output. The 

OOK modulation frequency will also become present and thus could 

lead to radiated emission violations if the frequency exceeds what is 

allowed in the ISM band.
When not using OOK modulation, J76 should be left open – an on-

board pull-up resistor keeps the level high.
Single ended or Differential Mode operation
The EPC9512 amplifier can be operated in one of two modes; single-

ended or differential mode. Single ended operation offers higher 

amplifier efficiency but reduced imaginary impedance drive capability. 

If the reflected impedance of the tuned coil load exceeds the capability 

of the amplifier to deliver the desired power, then the amplifier can be 

switched over to differential mode. In differential mode, the amplifier 

is capable of driving an impedance range of 1 Ω through 56 Ω and  

±35j Ω and maintains either the 1.375 A

RMS

 coil current or deliver up to  

33 W of power. The EPC9512 is set by default to differential mode and 

can be switched to single ended mode by inserting a jumper into J75.  

When inserted the amplifier operates in the single-ended mode.  

Using an external pull down with floating collector drain connection 

will have the same effect. The external transistor must be capable of 

sinking 25 mA and withstand at least 6 V. 
For differential mode only operation, the two ZVS inductors L

ZVS1

 and 

L

ZVS2

 can be replaced by a single inductor L

ZVS12

 and by removing C

ZVS1 

and C

ZVS2

.

ZVS Timing Adjustment
Setting the correct time to establish ZVS transitions is critical to 

achieving high efficiency with the EPC9512 amplifier. This can be 

done by selecting the values for R71, R72, R77, and R78 or P71, P72, 

P77, and P78 respectively. This procedure is best performed using a 

potentiometer installed at the appropriate locations that is used to 

determine the fixed resistor values. The procedure is the same for 

both single-ended and differential mode of operation. The timing 

MUST initially be set WITHOUT the source coil connected to the 

amplifier. The timing diagrams are given in figure 12 and should 

be referenced when following this procedure. Only perform these 

steps if changes have been made to the board as it is shipped 

preset. The steps are:
1. With power off, remove the jumper in JP1 and install it into JP50 to 

place the EPC9512 amplifier into Bypass mode. Connect the main 

input power supply (+) to JP1 (bottom pin for bypass mode) with 

ground connected to J1 ground (-) connection.

2. With power off, connect the control input power supply bus (19 V) 

to (+) connector (J1). Note the polarity of the supply connector.

3. Connect a LOW capacitance oscilloscope probe to the probe-hole 

of the half-bridge and the ground post.

4. Turn on the control supply – make sure the supply is approximately 

19 V.

5. Turn on the main supply voltage starting at 0 V and increasing 

to the required predominant operating value (such as 24 V but 

NEVER exceed the absolute maximum voltage of 80 V).

6. 

While observing the oscilloscope adjust the applicable 

potentiometers to achieve the green waveform of figure 12.

7. Repeat for the other half-bridge.
8. Replace the potentiometers with fixed value resistors if required. 

Remove the jumper from JP50 and install it back into JP1 to 

revert the EPC9512 back to pre-regulator mode.

Determining component values for L

ZVS

The ZVS tank circuit is not operated at resonance, and only provides   

the necessary negative device current for self-commutation of the 

output voltage at turn off. The capacitors C

ZVS1

 and C

ZVS2

 are chosen 

to have a very small ripple voltage component and are typically 

around 1 µF. The amplifier supply voltage, switch-node transition 

time will determine the value of inductance for L

ZVSx

 which needs 

to be sufficient to maintain ZVS operation over the DC device load 

resistance range and coupling between the device and source coil 

range and can be calculated using the following equation: 
                                                                                                                                                     

Where:
Δt

vt

  =  Voltage Transition Time [s]

ƒ

SW

  =  Operating Frequency [Hz]

C

OSSQ   

=  Charge Equivalent Device Output Capacitance [F]

C

well

 =  Gate driver well capacitance [F]. Use 20 pF for the LM5113

L

ZVS

=

t

vt

8   f

sw

 (C

OSSQ 

+ C

well

)

(1)

Содержание EPC9129

Страница 1: ...Demonstration System EPC9129 Quick Start Guide 6 78MHz 33WClass4WirelessPowerSystem usingEPC8010 EPC2038 EPC2019 EPC2016C Revision 1 0...

Страница 2: ...r based on the limits of 3 parameters coil current DC power delivered to the ZVS class D amplifier and maximum operating voltage of the ZVS class D amplifier The coil current has the lowest priority f...

Страница 3: ...fier supply after removing the jumper at location JP1 and inserting the jumper into location JP50 to disable the pre regulator followed by connecting the main positive supply to the bottom pin of JP1...

Страница 4: ...in the single ended mode Using an external pull down with floating collector drain connection will have the same effect The external transistor must be capable of sinking 25 mA and withstand at least...

Страница 5: ...nd 2 A for the EPC9514 The EPC9513 and EPC9514 device boards come equipped with Kelvin connections for easy and accurate measurement of the un regulated and regulated output voltages The rectified vol...

Страница 6: ...raditional silicon devices their relatively smaller size does magnify the thermal managementrequirements Theoperatormustobservethetemperature ofthegatedriverandeGaNFETstoensurethatbothareoperatingwith...

Страница 7: ...onnection Tuning network Class 3 coil f 6 78 MHz ON OFF KEY modulation Figure 5 Schematic diagram of the EPC9513 and EPC9514 demo board Load Device coil Un Regulated DC output Tuning Network Rectifier...

Страница 8: ...V V Figure 8 Proper connection and measurement setup for the amplifier board 17 24 VDC VIN supply note polarity Source coil connection External oscillator Switch node main oscilloscope probe Switch no...

Страница 9: ...on Q1turn off VAMP 0 time ZVS Partial ZVS ZVS diode conduction Q1turn on Q2turn off VAMP 0 time ZVS Partial ZVS ZVS diode conduction Figure 10 AirFuel Category 5 device board Disable Regulator Coil Co...

Страница 10: ...ed 10 nF 100 V TDK C1608X7R2A103K080AA 20 3 C90 C91 C92 1 F 25 V W rth 885012206076 21 2 C131 C221 1 nF 50 V Murata GRM1555C1H102JA01D 22 2 Czvs1 Czvs2 1 F 50 V W rth 885012207103 23 1 D1 25 V 11 A Li...

Страница 11: ...X 75 1 R53 12 Panasonic ERJ 2RKF12R0X 76 1 R54 0 Yageo RC0402JR 070RL 77 1 R55 23 2 k Panasonic ERJ 2RKF2322X 78 1 R57 160 k Panasonic ERJ 3EKF1603V 79 1 R58 33 k Panasonic ERJ 3GEYJ333V 80 1 R60 20 m...

Страница 12: ...gory 3 Coil NuCurrent NC20 R070L03E 079 063 0R71 24 1 J3 1 Male Vert SMD 2 x 2 Amphenol FCI 95278 101A04LF 25 2 L60 L61 Inductor 22 H 4 3 A Vishay Dale IHLP3232DZER220M11 26 1 L90 Inductor 10 H 150 mA...

Страница 13: ...mW Nexperia BZX84 C2V7 215 21 1 D86 LED 0603 Red Lite On LTST C193KRKT 5A 22 1 D87 43 V 250 mW Nexperia BZX84 C43 215 23 1 D88 44 V 51 6 A Littelfuse SMDJ36A 24 1 GP60 1 Male Vert W rth 61300111121 25...

Страница 14: ...peration Only Pre Regulator Disconnect SMD probe loop 1 TP1 SMD probe loop 1 TP2 Vamp VAMP 5 V G ND Lin OUT Hin a EPC9512_SE_ZVSclassD_Rev 3_1 SchDoc 500nH Lzvs1 500 nH Lzvs2 TBD Lzvs12 EMP TY 1 F 50...

Страница 15: ...4 7 F 100 V C65 10 H 150 mA L80 Isns Vout Comp 1 2 R30 EMP TY Icoil 100nF 100 V C50 10 1 2 R50 1 1 Male Vert GP60 1 ProbeHole PH60 20 1 2 R82 100 nF 16 V C81 100nF 100 V C30 22pF 50 V C44 22 pF 50 V C...

Страница 16: ...3U40 22 nF 25 V C3 GND 5 V OUT Vamp Out GU GL Out 10 nF 100 V 10 nF 100 V 10 nF 100 V C11 C12 Vamp Vamp Vamp VAMP GND Hin Lin Hin Lin 1 ProbeHole PH1 Ground Post 1 1 Male Vert GP1 4 7 1 2 R4 100 nF 16...

Страница 17: ...35 V C64 0 1 2 R54 100 V 3 A D60 STPS3H100UF Vfdbk Isns C63 6 2 3 EP 4 5 LDO VREF VSS 1 VDD U90 UCC27611DRV Isns Isns Isns Isns 10 H 150 mA L90 Isns Comp 100 nF 100 V C50 10 1 2 R50 1 GP60 1 ProbeHol...

Страница 18: ...6 V C91 22 pF 50 V C92 5VGD 5VGD 1 F 25 V C55 2 49 M1 1 2 R57 150 k 1 1 2 R58 UVLO 7 5 Bias Osc 4 8 Pgnd 1 275 V Cnt FA Sync SD FB Comp 10 6 Agnd Isens Vin 3 1 DR 2 9 UVLO U50 LM3481MM NOPB 44V 51 6 A...

Страница 19: ...e online com EPC would like to acknowledge Johanson Technology www johansontechnology com for their support of this project Information on the capacitors used in this kit can be found at http www joha...

Страница 20: ...rcompliancewiththeEuropeanUniondirectiveonelectromagneticcompatibilityoranyothersuchdirectivesorregulations Asboard builds are at times subject to product availability it is possible that boards may c...

Отзывы: