background image

CY22392

 

Document #: 38-07013  Rev. *D

Page 3 of 8 

Operation

The CY22392 is an upgrade to the existing CY2292. The new

device has a wider frequency range, greater flexibility,

improved performance, and incorporates many features that

reduce PLL sensitivity to external system issues.
The device has three PLLs which, when combined with the

reference, allow up to four independent frequencies to be

output on up to six pins. These three PLLs are completely

programmable.

Configurable PLLs

PLL1 generates a frequency that is equal to the reference

divided by an 8-bit divider (Q) and multiplied by an 11-bit

divider in the PLL feedback loop (P). The output of PLL1 is sent

to the crosspoint switch. The output of PLL1 is also sent to a

/2, /3, or /4 synchronous post-divider that is output through

CLKE. The frequency of PLL1 can be changed by external

CMOS inputs, S0, S1, S2. See the following section on

General-Purpose Inputs for more details.
PLL2 generates a frequency that is equal to the reference

divided by an 8-bit divider (Q) and multiplied by an 11-bit

divider in the PLL feedback loop (P). The output of PLL2 is sent

to the crosspoint switch.
PLL3 generates a frequency that is equal to the reference

divided by an 8-bit divider (Q) and multiplied by an 11-bit

divider in the PLL feedback loop (P). The output of PLL3 is sent

to the cross-point switch.

General-Purpose Inputs

S0, S1, and S2 are general-purpose inputs that can be

programmed to allow for eight different frequency settings.

Options that may be switched with these general purpose

inputs are as follows; the frequency of PLL1, the output divider

of CLKB, and the output divider of CLKA.
CLKA and CLKB both have 7-bit dividers that point to one of

two programmable settings (register 0 and register 1). Both

clocks share a single register control, so both must be set to

register 0, or both must be set to register 1.
For example: the part may be programmed to use S0, S1, and

S2 (0,0,0 to 1,1,1) to control eight different values of P and Q

on PLL1. For each PLL1 P and Q setting, one of the two CLKA

and CLKB divider registers can be chosen. Any divider change

as a result of switching S0, S1, or S2 is guaranteed to be glitch

free.

Crystal Input

The input crystal oscillator is an important feature of this device

because of its flexibility and performance features. 
The oscillator inverter has programmable drive strength. This

allows for maximum compatibility with crystals from various

manufacturers, processes, performances, and qualities. 
The input load capacitors are placed on-die to reduce external

component cost. These capacitors are true parallel-plate

capacitors for ultra-linear performance. These were chosen to

reduce the frequency shift that occurs when non-linear load

capacitance interacts with load, bias, supply, and temperature

changes. Non-linear (FET gate) crystal load capacitors should

not be used for MPEG, POTS dial tone, communications, or

other applications that are sensitive to absolute frequency

requirements.

The value of the load capacitors is determined by six bits in a

programmable register. The load capacitance can be set with

a resolution of 0.375 pF for a total crystal load range of 6 pF

to 30 pF.
For driven clock inputs the input load capacitors may be

completely bypassed. This enables the clock chip to accept

driven frequency inputs up to 166 MHz. If the application

requires a driven input, then XTALOUT must be left floating.

Output Configuration

Under normal operation there are four internal frequency

sources that may be routed via a programmable crosspoint

switch to any of the four programmable 7-bit output dividers.

The four sources are: reference, PLL1, PLL2, and PLL3. In

addition, many outputs have a unique capability for even

greater flexibility. The following is a description of each output. 
CLKA’s output originates from the crosspoint switch and goes

through a programmable 7-bit post divider. The 7-bit post

divider derives its value from one of two programmable

registers. Each of the eight possible combinations of S0, S1,

S2 controls which of the two programmable registers is loaded

into CLKA’s 7-bit post divider. See the section

“General-Purpose Inputs” for more information.
CLKB’s output originates from the crosspoint switch and goes

through a programmable 7-bit post divider. The 7-bit post

divider derives its value from one of two programmable

registers. Each of the eight possible combinations of S0, S1,

and S2 controls which of the two programmable registers is

loaded into CLKA’s 7-bit post divider. See the section

“General-Purpose” Inputs for more information.
CLKC’s output originates from the crosspoint switch and goes

through a programmable 7-bit post divider. The 7-bit post

divider derives its value from one programmable register.
CLKD’s output originates from the crosspoint switch and goes

through a programmable 7-bit post divider. The 7-bit post

divider derives its value from one programmable register.
CLKE’s output originates from PLL1 and goes through a post

divider that may be programmed to /2, /3, or /4.
XBUF is simply the buffered reference.
The Clock outputs have been designed to drive a single point

load with a total lumped load capacitance of 15 pF. While

driving multiple loads is possible with the proper termination it

is generally not recommended.

Power Saving Features

The SHUTDOWN/OE input three-states the outputs when

pulled LOW. If system shutdown is enabled, a LOW on this pin

also shuts off the PLLs, counters, the reference oscillator, and

all other active components. The resulting current on the V

DD

pins will be less than 5

µ

A (typical). After leaving shutdown

mode, the PLLs will have to relock. 
The S2/SUSPEND input can be configured to shut down a

customizable set of outputs and/or PLLs, when LOW. All PLLs

and any of the outputs can be shut off in nearly any combi-

nation. The only limitation is that if a PLL is shut off, all outputs

derived from it must also be shut off. Suspending a PLL shuts

off all associated logic, while suspending an output simply

forces a three-state condition.

Содержание CY22392

Страница 1: ...control lower part count and more secure product supply In addition any part in the family can also be programmed multiple times which reduces programming errors and provides an easy upgrade path for...

Страница 2: ...igurable clock output C VDD 2 Power supply AGND 3 Analog Ground XTALIN 4 Reference crystal input or external reference clock input XTALOUT 5 Reference crystal feedback XBUF 6 Buffered reference clock...

Страница 3: ...ations that are sensitive to absolute frequency requirements The value of the load capacitors is determined by six bits in a programmable register The load capacitance can be set with a resolution of...

Страница 4: ...Cypress s web site at www cypress com Junction Temperature Limitations It is possible to program the CY22392 such that the maximum Junction Temperature rating is exceeded The package JA is 115 C W Use...

Страница 5: ...20 A Switching Characteristics Parameter Name Description Min Typ Max Unit 1 t1 Output Frequency 3 4 Clock output limit Commercial 200 MHz Clock output limit Industrial 166 MHz t2 Output Duty Cycle 3...

Страница 6: ...ms All Outputs Duty Cycle and Rise Fall Time Output Three State Timing CLK Output Jitter Frequency Change t1 OUTPUT t2 t3 t4 t5 OE ALL OUTPUTS t5 THREE STATE CLK OUTPUT t6 SELECT OLD SELECT NEW SELECT...

Страница 7: ...ring Information Ordering Code Package Name Package Type Operating Range Operating Voltage CY22392FC Z16 16 TSSOP Commercial TA 0 C to 70 C 3 3V CY22392FI Z16 16 TSSOP Industrial TA 40 C to 85 C 3 3V...

Страница 8: ...Updates based on characterization results Removed Preliminary heading Added paragraph on Junction Temperature limitations and part configura tions Removed soldering temperature rating Split crystal l...

Отзывы: