background image

STK14C88-5

Document Number: 001-51038 Rev. **

Page 4 of 17

Hardware STORE (HSB) Operation

The STK14C88-5 provides the HSB pin for controlling and
acknowledging the STORE operations. The HSB pin is used to
request a hardware STORE cycle. When the HSB pin is driven
LOW, the STK14C88-5 conditionally initiates a STORE
operation after t

DELAY

. An actual STORE cycle only begins if a

WRITE to the SRAM takes place since the last STORE or
RECALL cycle. The HSB pin also acts as an open drain driver
that is internally driven LOW to indicate a busy condition, while
the STORE (initiated by any means) is in progress. Pull up this
pin with an external 10K ohm resistor to V

CAP 

if HSB is used as

a driver.

SRAM READ and WRITE operations, that are in progress when
HSB is driven LOW by any means, are given time to complete
before the STORE operation is initiated. After HSB goes LOW,
the STK14C88-5 continues SRAM operations for t

DELAY

. During

t

DELAY

, multiple SRAM READ operations take place. If a WRITE

is in progress when HSB is pulled LOW, it allows a time, t

DELAY

to complete. However, any SRAM WRITE cycles requested after
HSB goes LOW are inhibited until HSB returns HIGH.

During any STORE operation, regardless of how it is initiated,
the STK14C88-5 continues to drive the HSB pin LOW, releasing
it only when the STORE is complete. After completing the
STORE operation, the STK14C88-5 remains disabled until the
HSB pin returns HIGH.

If HSB is not used, it is left unconnected.

Hardware RECALL (Power Up)

During power up or after any low power condition (V

CC

  <

V

RESET

), an internal RECALL request is latched. When V

CC

once again exceeds the sense voltage of V

SWITCH

, a RECALL

cycle is automatically initiated and takes t

HRECALL

 to complete.

If the STK14C88-5 is in a WRITE

 

state at the end of power up

RECALL, the SRAM

 

data is corrupted. To help avoid this

situation, a 10 Kohm resistor is connected either between WE
and system V

CC

 or between CE and system V

CC

.

Software STORE

Data is transferred from the SRAM to the nonvolatile memory by
a software address sequence. The STK14C88-5 software
STORE cycle is initiated by executing sequential CE controlled
READ cycles from six specific address locations in exact order.
During the STORE cycle, an erase of the previous nonvolatile
data is first performed followed by a program of the nonvolatile
elements. When a STORE cycle is initiated, input and output are
disabled until the cycle is completed.

Because a sequence of READs from specific addresses is used
for STORE initiation, it is important that no other READ or WRITE
accesses intervene in the sequence. If they intervene, the
sequence is aborted and no STORE or RECALL takes place.

To initiate the software STORE cycle, the following READ
sequence is performed:

1. Read address 0x0E38, Valid READ

2. Read address 0x31C7, Valid READ

3. Read address 0x03E0, Valid READ

4. Read address 0x3C1F, Valid READ

5. Read address 0x303F, Valid READ

6. Read address 0x0FC0, Initiate STORE cycle

The software sequence is clocked with CE controlled READs.
When the sixth address in the sequence is entered, the STORE
cycle commences and the chip is disabled. It is important that
READ cycles and not WRITE cycles are used in the sequence.
It is not necessary that OE is LOW for a valid sequence. After the
t

STORE

 cycle time is fulfilled, the SRAM is again activated for

READ and WRITE operation.

Software RECALL

Data is transferred from the nonvolatile memory to the SRAM by
a software address sequence. A software RECALL cycle is
initiated with a sequence of READ operations in a manner similar
to the software STORE initiation. To initiate the RECALL cycle,
the following sequence of CE controlled READ operations is
performed:

1. Read address 0x0E38, Valid READ

2. Read address 0x31C7, Valid READ

3. Read address 0x03E0, Valid READ

4. Read address 0x3C1F, Valid READ

5. Read address 0x303F, Valid READ

6. Read address 0x0C63, Initiate RECALL cycle

Internally, RECALL is a two step procedure. First, the SRAM data
is cleared, and then the nonvolatile information is transferred into
the SRAM cells. After the t

RECALL

 cycle time, the SRAM is once

again ready for READ and WRITE operations. The RECALL
operation does not alter the data in the nonvolatile elements. The
nonvolatile data can be recalled an unlimited number of times.

Figure 4.   AutoStore Inhibit Mode

[+] Feedback 

Содержание STK14C88-5

Страница 1: ...nvolatile element in each memory cell The embedded nonvolatile elements incorporate QuantumTrap technology producing the world s most reliable nonvolatile memory The SRAM provides unlimited read and write cycles while independent nonvolatile data resides in the highly reliable QuantumTrap cell Data transfers from the SRAM to the nonvolatile elements the STORE operation takes place automatically at...

Страница 2: ...utput Enable Active LOW The active LOW OE input enables the data output buffers during read cycles Deasserting OE HIGH causes the IO pins to tri state VSS Ground Ground for the Device The device is connected to ground of the system VCC Power Supply Power Supply Inputs to the Device HSB Input or Output Hardware Store Busy HSB When LOW this output indicates a Hardware Store is in progress When pulle...

Страница 3: ...3 AutoStore on device power down AutoStore operation is a unique feature of QuantumTrap technology and is enabled by default on the STK14C88 5 During normal operation the device draws current from VCC to charge a capacitor connected to the VCAP pin This stored charge is used by the chip to perform a single STORE operation If the voltage on the VCC pin drops below VSWITCH the part automatically dis...

Страница 4: ...8 5 software STORE cycle is initiated by executing sequential CE controlled READ cycles from six specific address locations in exact order During the STORE cycle an erase of the previous nonvolatile data is first performed followed by a program of the nonvolatile elements When a STORE cycle is initiated input and output are disabled until the cycle is completed Because a sequence of READs from spe...

Страница 5: ...ly initiated by explicit request using either the software sequence or the HSB pin Low Average Active Power CMOS technology provides the STK14C88 5 the benefit of drawing significantly less current when it is cycled at times longer than 50 ns Figure 5 and Figure 6 shows the relationship between ICC and READ or WRITE cycle time Worst case current consumption is shown for both CMOS and TTL input lev...

Страница 6: ... to meet this requirementandnotexceedthe maximumVCAP valuebecause the higher inrush currents may reduce the reliability of the internal pass transistor Customers that want to use a larger VCAP value to make sure there is extra store charge should discuss their VCAP size selection with Cypress to understand any impact on the VCAP voltage level at the end of a tRECALL period Table 1 Hardware Mode Se...

Страница 7: ...e Values obtained without output loads 10 mA ICC4 Average VCAP Current during AutoStore Cycle All Inputs Do Not Care VCC Max Average current for duration tSTORE 2 mA ISB1 7 VCC Standby Current Standby Cycling TTL Input Levels tRC 35 ns CE VIH tRC 45 ns CE VIH 26 23 mA mA ISB2 7 VCC Standby Current CE VCC 0 2V All others VIN 0 2V or VCC 0 2V Standby current level after nonvolatile cycle is complete...

Страница 8: ...ion Test Conditions 32 CDIP 32 LCC Unit ΘJA Thermal Resistance Junction to Ambient Test conditions follow standard test methods and procedures for measuring thermal impedance per EIA JESD51 TBD TBD C W ΘJC Thermal Resistance Junction to Case TBD TBD C W Figure 7 AC Test Loads AC Test Conditions 5 0V Output 30 pF R1 963Ω R2 512Ω 5 0V Output 5 pF R1 963Ω R2 512Ω For Tri state Specs Input Pulse Level...

Страница 9: ...5 5 ns tHZCE 11 tEHQZ Chip Disable to Output Inactive 13 15 ns tLZOE 11 tGLQX Output Enable to Output Active 0 0 ns tHZOE 11 tGHQZ Output Disable to Output Inactive 13 15 ns tPU 8 tELICCH Chip Enable to Power Active 0 0 ns tPD 8 tEHICCL Chip Disable to Power Standby 35 45 ns Switching Waveforms Figure 8 SRAM Read Cycle 1 Address Controlled 9 10 Figure 9 SRAM Read Cycle 2 CE and OE Controlled 9 W5 ...

Страница 10: ... tHA tWHAX tEHAX Address Hold After End of Write 0 0 ns tHZWE 11 12 tWLQZ Write Enable to Output Disable 13 15 ns tLZWE 11 tWHQX Output Active After End of Write 5 5 ns Switching Waveforms Figure 10 SRAM Write Cycle 1 WE Controlled 13 14 Figure 11 SRAM Write Cycle 2 CE Controlled 13 14 tWC tSCE tHA tAW tSA tPWE tSD tHD tHZWE tLZWE ADDRESS CE WE DATA IN DATA OUT DATA VALID HIGH IMPEDANCE PREVIOUS D...

Страница 11: ...Voltage Trigger Level 4 0 4 5 V VRESET Low Voltage Reset Level 3 6 V tVCCRISE VCC Rise Time 150 μs tVSBL 13 Low Voltage Trigger VSWITCH to HSB low 300 ns Switching Waveforms Figure 12 AutoStore Power Up RECALL WE Notes 15 tHRECALL starts from the time VCC rises above VSWITCH 16 CE and OE low and WE high for output behavior 17 HSB is asserted low for 1us when VCAP drops through VSWITCH If an SRAM W...

Страница 12: ...E 18 19 tELAX Address Hold Time 20 20 ns tRECALL RECALL Duration 20 20 μs Switching Waveforms Figure 13 CE Controlled Software STORE RECALL Cycle 19 tRC tRC tSA tSCE tHACE tSTORE tRECALL DATA VALID DATA VALID 6 S S E R D D A 1 S S E R D D A HIGH IMPEDANCE ADDRESS CE OE DQ DATA Notes 18 The software sequence is clocked on the falling edge of CE without involving OE double clocking aborts the sequen...

Страница 13: ... STK14C88 5 Unit Min Max tDHSB 16 20 tRECOVER tHHQX Hardware STORE High to Inhibit Off 700 ns tPHSB tHLHX Hardware STORE Pulse Width 15 ns tHLBL Hardware STORE Low to STORE Busy 300 ns Switching Waveforms Figure 14 Hardware STORE Cycle Note 20 tDHSB is only applicable after tSTORE is complete Feedback ...

Страница 14: ...4 32 pin CDIP 300 mil STK14C88 5K45M 001 51694 32 pin CDIP 300 mil STK14C88 5L45M 51 80068 32 pin LCC 450mil The above table contains Final information Please contact your local Cypress sales representative for availability of these parts Speed 35 35 ns 45 45 ns Package C Ceramic 32 pin 300 mil DIP Part Numbering Nomenclature STK14C88 5 C 35 M Temperature Range M Military 55 to 125 C K L Ceramic 3...

Страница 15: ...STK14C88 5 Document Number 001 51038 Rev Page 15 of 17 Package Diagram Figure 15 32 Pin 300 Mil Side Braze DIL 001 51694 001 51694 Feedback ...

Страница 16: ...STK14C88 5 Document Number 001 51038 Rev Page 16 of 17 Figure 16 32 Pad 450 Mil LCC 51 80068 Package Diagram continued 51 80068 Feedback ...

Страница 17: ...specified in the applicable agreement Any reproduction modification translation compilation or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress Disclaimer CYPRESS MAKES NO WARRANTY OF ANY KIND EXPRESS OR IMPLIED WITH REGARD TO THIS MATERIAL INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS ...

Отзывы: