background image

CY7C1546V18, CY7C1557V18
CY7C1548V18, CY7C1550V18

Document Number: 001-06550 Rev. *E

Page 23 of 28

Switching Characteristics 

Over the Operating Range

[21, 22]

Cypress 

Parameter

Consortium 

Parameter

Description

375 MHz

333 MHz

300 MHz

Unit

Min

Max

Min

Max

Min

Max

t

POWER

V

DD

(Typical) to the First Access 

[23]

1

1

1

ms

t

CYC

t

KHKH

K Clock Cycle Time

2.66 8.40

3.0

8.40

3.3

8.40

ns

t

KH

t

KHKL

Input Clock (K/K)  HIGH

0.4

0.4

0.4

t

CYC

t

KL

t

KLKH

Input Clock (K/K) LOW

0.4

0.4

0.4

t

CYC

t

KHKH

t

KHKH

K Clock Rise to K Clock Rise (rising edge to rising edge)

1.13

1.28

1.40

ns

Setup Times

t

SA

t

AVKH 

Address Setup to K Clock Rise

0.4

0.4

0.4

ns

t

SC

t

IVKH

Control Setup to K Clock

 

Rise (LD, R/W)

0.4

0.4

0.4

ns

t

SCDDR

t

IVKH

Double Data Rate Control Setup to Clock (K/K) Rise 
(BWS

0

, BWS

1

, BWS

2

, BWS

3

)

0.28

0.28

0.28

ns

t

SD

t

DVKH

D

[X:0]

 Setup to Clock (K/K) Rise

0.28

0.28

0.28

ns

Hold Times

t

HA

t

KHAX

Address Hold After K Clock Rise

0.4

0.4

0.4

ns

t

HC

t

KHIX

Control Hold After K Clock Rise (LD, R/W)

0.4

0.4

0.4

ns

t

HCDDR

t

KHIX

Double Data Rate Control Hold After Clock (K/K) Rise
(BWS

0

, BWS

1

, BWS

2

, BWS

3

)

0.28

0.28

0.28

ns

t

HD

t

KHDX

D

[X:0]

 Hold After Clock (K/K) Rise

0.28

0.28

0.28

ns

Output Times

t

CO

t

CHQV

K/K Clock Rise to Data Valid

0.45

0.45

0.45

ns

t

DOH

t

CHQX

Data Output Hold After K/K Clock Rise (Active to Active)

–0.45

–0.45

–0.45

ns

t

CCQO

t

CHCQV

K/K Clock Rise to Echo Clock Valid

0.45

0.45

0.45

ns

t

CQOH

t

CHCQX

Echo Clock Hold After K/K Clock Rise 

–0.45

–0.45

–0.45

ns

t

CQD

t

CQHQV 

Echo Clock High to Data Valid

0.2

0.2

0.2

ns

t

CQDOH

t

CQHQX

Echo Clock High to Data Invalid

–0.2

–0.2

–0.2

ns

t

CQH

t

CQHCQL

Output Clock (CQ/CQ) HIGH 

[24]

0.88

1.03

1.15

ns

t

CQHCQH

t

CQHCQH

CQ Clock Rise to CQ Clock Rise 

[24]

(rising edge to rising edge)

0.88

1.03

1.15

ns

t

CHZ

t

CHQZ

Clock (K/K) Rise to High Z (Active to High Z) 

[25, 26]

0.45

0.45

0.45

ns

t

CLZ

t

CHQX1

Clock (K/K) Rise to Low Z 

[25, 26]

–0.45

–0.45

–0.45

ns

t

QVLD

t

QVLD

Echo Clock High to QVLD Valid 

[27]

–0.20 0.20 –0.20 0.20 –0.20 0.20

ns

DLL Timing

t

KC Var

t

KC Var

Clock Phase Jitter

0.20

0.20

0.20

ns

t

KC lock

t

KC lock

DLL Lock Time (K)

2048

2048

2048

Cycles

t

KC Reset

t

KC Reset

K Static to DLL Reset 

[28]

30

30

30

ns

Notes

22. When a part with a maximum frequency above 300 MHz is operating at a lower clock frequency, it requires the input timings of the frequency range in which it is operated 

and outputs data with the output timings of that frequency range. 

23. This part has a voltage regulator internally; t

POWER

 is the time that the power is supplied above V

DD 

minimum initially before a read or write operation is initiated.

24. These parameters are extrapolated from the input timing parameters (t

KHKH 

- 250 ps, where 250 ps is the internal jitter. An input jitter of 200 ps (t

KC Var

) is already 

included in the t

KHKH

). These parameters are only guaranteed by design and are not tested in production

25. t

CHZ

, t

CLZ

, are specified with a load capacitance of 5 pF as in (b) of 

“AC Test Loads and Waveforms” 

on page 22. Transition is measured 

±

100 mV from steady-state 

voltage.

26. At any given voltage and temperature, t

CHZ

 is less than t

CLZ 

and t

CHZ

 less than t

CO

27. t

QVLD 

specification is applicable for both rising and falling edges of QVLD signal.

28. Hold to >V

IH

 or <V

IL

.

[+] Feedback 

[+] Feedback 

Содержание CY7C1546V18

Страница 1: ...RAM equipped with DDR II architecture The DDR II consists of an SRAM core with advanced synchronous peripheral circuitry Addresses for read and write are latched on alternate rising edges of the input...

Страница 2: ...Data Reg R W DQ 7 0 Output Logic Reg Reg Reg 8 8 16 8 NWS 1 0 VREF Write Add Decode 8 8 LD Control 22 4M x 8 Array 4M x 8 Array Write Reg Write Reg CQ CQ R W DOFF QVLD 8 CLK A 21 0 Gen K K Control Lo...

Страница 3: ...R W DQ 17 0 Output Logic Reg Reg Reg 18 18 36 18 BWS 1 0 VREF Write Add Decode 18 18 LD Control 21 2M x 18 Array 2M x 18 Array Write Reg Write Reg CQ CQ R W DOFF QVLD 18 CLK A 19 0 Gen K K Control Log...

Страница 4: ...SS VSS VDDQ NC NC DQ0 M NC NC NC VSS VSS VSS VSS VSS NC NC NC N NC NC NC VSS A A A VSS NC NC NC P NC NC DQ7 A A QVLD A A NC NC NC R TDO TCK A A A NC A A A TMS TDI CY7C1557V18 8M x 9 1 2 3 4 5 6 7 8 9...

Страница 5: ...NC NC DQ0 R TDO TCK A A A NC A A A TMS TDI CY7C1550V18 2M x 36 1 2 3 4 5 6 7 8 9 10 11 A CQ NC 144M A R W BWS2 K BWS1 LD A A CQ B NC DQ27 DQ18 A BWS3 K BWS0 A NC NC DQ8 C NC NC DQ28 VSS A NC A VSS NC...

Страница 6: ...Y7C1548V18 BWS0 controls D 8 0 and BWS1 controls D 17 9 CY7C1550V18 BWS0 controls D 8 0 BWS1 controls D 17 9 BWS2 controls D 26 18 and BWS3 controls D 35 27 All the Byte Write Selects are sampled on t...

Страница 7: ...ugh a 10 Kohm or less pull up resistor The device behaves in DDR I mode when the DLL is turned off In this mode the device is operated at a frequency of up to 167 MHz with DDR I timing TDO Output TDO...

Страница 8: ...ter provided BWS 1 0 are both asserted active The 36 bits of data are then written into the memory array at the specified location Write accesses can be initiated on every rising edge of the positive...

Страница 9: ...rives DLL These chips use a Delay Lock Loop DLL that is designed to function between 120 MHz and the specified maximum clock frequency The DLL may be disabled by applying ground to the DOFF pin When t...

Страница 10: ...548V18 only the lower byte D 8 0 is written into the device D 17 9 remains unaltered H L L H During the data portion of a write sequence CY7C1546V18 only the upper nibble D 7 4 is written into the dev...

Страница 11: ...nto the device D 35 9 remains unaltered L H H H L H During the data portion of a write sequence only the lower byte D 8 0 is written into the device D 35 9 remains unaltered H L H H L H During the dat...

Страница 12: ...edge of TCK Instruction Register Three bit instructions can be serially loaded into the instruction register This register is loaded when it is placed between the TDI and TDO pins as shown in TAP Cont...

Страница 13: ...an register Once the data is captured it is possible to shift out the data by putting the TAP into the Shift DR state This places the boundary scan register between the TDI and TDO pins PRELOAD places...

Страница 14: ...er follows 10 TEST LOGIC RESET TEST LOGIC IDLE SELECT DR SCAN CAPTURE DR SHIFT DR EXIT1 DR PAUSE DR EXIT2 DR UPDATE DR 1 0 1 1 0 1 0 1 0 0 0 1 1 1 0 1 0 1 0 0 0 1 0 1 1 0 1 0 0 1 1 0 SELECT IR SCAN CA...

Страница 15: ...VIH Input HIGH Voltage 0 65VDD VDD 0 3 V VIL Input LOW Voltage 0 3 0 35VDD V IX Input and Output Load Current GND VI VDD 5 5 A 0 0 1 2 29 30 31 Boundary Scan Register Identification Register 0 1 2 10...

Страница 16: ...Rise 5 ns Hold Times tTMSH TMS Hold after TCK Clock Rise 5 ns tTDIH TDI Hold after Clock Rise 5 ns tCH Capture Hold after Clock Rise 5 ns Output Times tTDOV TCK Clock LOW to TDO Valid 10 ns tTDOX TCK...

Страница 17: ...ion Codes Instruction Code Description EXTEST 000 Captures the input and output ring contents IDCODE 001 Loads the ID register with the vendor ID code and places the register between TDI and TDO This...

Страница 18: ...3A 90 2L 7 8P 35 10E 63 2A 91 3L 8 9R 36 10D 64 1A 92 1M 9 11P 37 9E 65 2B 93 1L 10 10P 38 10C 66 3B 94 3N 11 10N 39 11D 67 1C 95 3M 12 9P 40 9C 68 1B 96 1N 13 10M 41 9D 69 3D 97 2M 14 11N 42 11B 70 3...

Страница 19: ...e power and clock K K for 2048 cycles to lock the DLL DLL Constraints DLL uses K clock as its synchronizing input The input must have low phase jitter which is specified as tKC Var The DLL functions a...

Страница 20: ...put LOW Voltage Note 18 VDDQ 2 0 12 VDDQ 2 0 12 V VOH LOW Output HIGH Voltage IOH 0 1 mA Nominal Impedance VDDQ 0 2 VDDQ V VOL LOW Output LOW Voltage IOL 0 1 mA Nominal Impedance VSS 0 2 V VIH Input H...

Страница 21: ...r process change that may affect these parameters Parameter Description Test Conditions Max Unit CIN Input Capacitance TA 25 C f 1 MHz VDD 1 8V VDDQ 1 5V 5 5 pF CCLK Clock Input Capacitance 8 5 pF CO...

Страница 22: ...VREF 0 75V VREF 0 75V 21 0 75V Under Test 0 75V Device Under Test OUTPUT 0 75V VREF VREF OUTPUT ZQ ZQ a Slew Rate 2 V ns RQ 250 b RQ 250 Note 21 Unless otherwise noted test conditions assume signal tr...

Страница 23: ...0 2 ns tCQDOH tCQHQX Echo Clock High to Data Invalid 0 2 0 2 0 2 ns tCQH tCQHCQL Output Clock CQ CQ HIGH 24 0 88 1 03 1 15 ns tCQHCQH tCQHCQH CQ Clock Rise to CQ Clock Rise 24 rising edge to rising e...

Страница 24: ...D t CLZ t CHZ D20 D21 D30 D31 t CQDOH Q00 Q11 Q01 Q10 tDOH tCO Q40 Q41 tCQD t t tCQH CQHCQH Notes 29 Q00 refers to output from address A0 Q01 refers to output from the next internal burst address foll...

Страница 25: ...Fine Pitch Ball Grid Array 15 x 17 x 1 4 mm Industrial CY7C1557V18 375BZI CY7C1548V18 375BZI CY7C1550V18 375BZI CY7C1546V18 375BZXI 51 85195 165 Ball Fine Pitch Ball Grid Array 15 x 17 x 1 4 mm Pb Fr...

Страница 26: ...18 300BZXC CY7C1546V18 300BZI 51 85195 165 Ball Fine Pitch Ball Grid Array 15 x 17 x 1 4 mm Industrial CY7C1557V18 300BZI CY7C1548V18 300BZI CY7C1550V18 300BZI CY7C1546V18 300BZXI 51 85195 165 Ball Fi...

Страница 27: ...V18 CY7C1550V18 Document Number 001 06550 Rev E Page 27 of 28 Package Diagram Figure 6 165 Ball FBGA 15 x 17 x 1 4 mm 0 2 2 8 8 8 3 4 0 0 2 2 4 0 6 7 44 6 7 0 2 0 2 3 2 0 490 3 2 3 3 4 3 0 7 4 G 2 2 3...

Страница 28: ...IND EXPRESS OR IMPLIED WITH REGARD TO THIS MATERIAL INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE Cypress reserves the right to make chang...

Отзывы: