background image

 

72-Mbit(2M x 36/4M x 18/1M x 72)

Pipelined SRAM with NoBL™ Architecture

CY7C1470V25
CY7C1472V25
CY7C1474V25

Cypress Semiconductor Corporation

198 Champion Court

San Jose

,

CA 95134-1709

408-943-2600

Document #: 38-05290 Rev. *I

 Revised June 21, 2006

Features

• Pin-compatible and functionally equivalent to ZBT™ 

• Supports 250-MHz bus operations with zero wait states

— Available speed grades are 250, 200 and 167 MHz

• Internally self-timed output buffer control to eliminate 

the need to use asynchronous OE

• Fully registered (inputs and outputs) for pipelined 

operation

• Byte Write capability

• Single 2.5V power supply

• 2.5V/1.8V I/O supply (V

DDQ

)

• Fast clock-to-output times

— 3.0 ns (for 250-MHz device)

• Clock Enable (CEN) pin to suspend operation

• Synchronous self-timed writes

• CY7C1470V25, CY7C1472V25 available in 

JEDEC-standard lead-free 100-pin TQFP, lead-free and 
non-lead-free 165-ball FBGA package. CY7C1474V25 
available in lead-free and non-lead-free 209 ball FBGA 
package

• IEEE 1149.1 JTAG Boundary Scan compatible

• Burst capability—linear or interleaved burst order

• “ZZ” Sleep Mode option and Stop Clock option

Functional Description

The CY7C1470V25/CY7C1472V25/CY7C1474V25 are 2.5V,
2M x 36/4M x 18/1M x 72 Synchronous pipelined burst SRAMs
with No Bus Latency™ (NoBL

™)

 logic, respectively. They are

designed to support unlimited true back-to-back Read/Write
operations with no wait states. The
CY7C1470V25/CY7C1472V25/CY7C1474V25 are equipped
with the advanced (NoBL) logic required to enable consec-
utive Read/Write operations with data being transferred on
every clock cycle. This feature dramatically improves the
throughput of data in systems that require frequent Write/Read
transitions. The CY7C1470V25/CY7C1472V25/CY7C1474V25
are pin-compatible and functionally equivalent to ZBT devices.

All synchronous inputs pass through input registers controlled
by the rising edge of the clock. All data outputs pass through
output registers controlled by the rising edge of the clock. The
clock input is qualified by the Clock Enable (CEN) signal,
which when deasserted suspends operation and extends the
previous clock cycle. Write operations are controlled by the
Byte Write Selects (BW

a

–BW

h

 for CY7C1474V25, BW

a

–BW

d

for CY7C1470V25 and BW

a

–BW

b

 for CY7C1472V25) and a

Write Enable (WE) input. All writes are conducted with on-chip
synchronous self-timed write circuitry.

Three synchronous Chip Enables (CE

1

, CE

2

, CE

3

) and an

asynchronous Output Enable (OE) provide for easy bank
selection and output tri-state control. In order to avoid bus
contention, the output drivers are synchronously tri-stated
during the data portion of a write sequence.

A0, A1, A

C

MODE

BW

a

BW

b

WE

CE1
CE2
CE3

OE

READ LOGIC

DQs
DQP

a

DQP

b

DQP

c

DQP

d

D

A

T

A

S

T

E

E

R

I

N

G

O

U

T

P

U

T

B

U

F

F

E

R

S

MEMORY

ARRAY

E

E

INPUT

REGISTER 0

ADDRESS

REGISTER 0

WRITE ADDRESS

REGISTER 1

WRITE ADDRESS

REGISTER 2

WRITE REGISTRY

AND DATA COHERENCY

CONTROL LOGIC

BURST
LOGIC

A0'

A1'

D1
D0

Q1
Q0

A0

A1

C

ADV/LD

ADV/LD

E

INPUT

REGISTER 1 

S

E

N

S

E

A

M

P

S

E

CLK

CEN

WRITE

DRIVERS

BW

c

BW

d

ZZ

SLEEP 

CONTROL

O

U

T

P

U

T

R

E

G

I

S

T

E

R

S

Logic Block Diagram-CY7C1470V25 (2M x 36)

[+] Feedback 

Содержание CY7C1470V25

Страница 1: ...equired to enable consec utive Read Write operations with data being transferred on every clock cycle This feature dramatically improves the throughput of data in systems that require frequent Write R...

Страница 2: ...am CY7C1472V25 4M x 18 Logic Block Diagram CY7C1474V25 1M x 72 A0 A1 A C MODE CE1 CE2 CE3 OE READ LOGIC DQs DQPa DQPb DQPc DQPd DQPe DQPf DQPg DQPh D A T A S T E E R I N G O U T P U T B U F F E R S ME...

Страница 3: ...Z CY7C1470V25 100 pin TQFP Pinout A A A A A 1 A 0 V SS V DD A A A A A A A NC NC VDDQ VSS NC DQPa DQa DQa VSS VDDQ DQa DQa VSS NC VDD DQa DQa VDDQ VSS DQa DQa NC NC VSS VDDQ NC NC NC NC NC NC VDDQ VSS...

Страница 4: ...D NC VDD DQa VDD VDDQ DQa VDDQ VDD VDD VDDQ VDD VDDQ DQa VDDQ A A VSS A A A DQb DQb DQb ZZ DQa DQa DQPa DQa A VDDQ A 2 3 4 5 6 7 1 A B C D E F G H J K L M N P R TDO NC 576M NC 1G NC NC DQPb NC DQb A C...

Страница 5: ...VSS VSS VSS ZZ VSS VSS VSS VSS NC VDDQ VSS VSS NC VSS VSS VSS VSS VSS VSS NC VSS VDDQ VDDQ VDDQ VDDQ VDDQ NC VDDQ VDDQ VDDQ VDDQ NC VDDQ VDDQ VDDQ VDDQ NC VDDQ VDDQ VDDQ VDDQ VDDQ VDDQ VDDQ VDDQ VDDQ...

Страница 6: ...by A 18 0 during the previous clock rise of the read cycle The direction of the pins is controlled by OE and the internal control logic When OE is asserted LOW the pins can behave as outputs When HIGH...

Страница 7: ...and A1 in the burst sequence and will wrap around when incre mented sufficiently A HIGH input on ADV LD will increment the internal burst counter regardless of the state of chip enables inputs or WE...

Страница 8: ...rameter is sampled 0 ns Truth Table 1 2 3 4 5 6 7 Operation Address Used CE ZZ ADV LD WE BWx OE CEN CLK DQ Deselect Cycle None H L L X X X L L H Tri State Continue Deselect Cycle None X L H X X X L L...

Страница 9: ...Write Bytes d a L L H H L Write Bytes d b L L H L H Write Bytes d b a L L H L L Write Bytes d c L L L H H Write Bytes d c a L L L H L Write Bytes d c b L L L L H Write All Bytes L L L L L Function CY7...

Страница 10: ...ball is pulled up internally resulting in a logic HIGH level Test Data In TDI The TDI ball is used to serially input information into the registers and can be connected to the input of any of the regi...

Страница 11: ...SAMPLE PRELOAD rather it performs a capture of the I O ring when these instructions are executed Instructions are loaded into the TAP controller during the Shift IR state when the instruction register...

Страница 12: ...n a board Reserved These instructions are not implemented but are reserved for future use Do not use these instructions TAP Timing t TL Test Clock TCK 1 2 3 4 5 6 Test Mode Select TMS tTH Test Data Ou...

Страница 13: ...H2 Output HIGH Voltage IOH 100 A VDDQ 2 5V 2 1 V VDDQ 1 8V 1 6 V VOL1 Output LOW Voltage IOL 1 0 mA VDDQ 2 5V 0 4 V VOL2 Output LOW Voltage IOL 100 A VDDQ 2 5V 0 2 V VDDQ 1 8V 0 2 V VIH Input HIGH Vol...

Страница 14: ...between TDI and TDO This operation does not affect SRAM operations SAMPLE Z 010 Captures I O ring contents Places the boundary scan register between TDI and TDO Forces all SRAM output drivers to a Hi...

Страница 15: ...31 P10 51 G10 71 B2 12 L1 32 R9 52 F10 13 J2 33 R10 53 E10 14 M1 34 R11 54 A9 15 N1 35 N11 55 B9 16 K2 36 M11 56 A10 17 L2 37 L11 57 B10 18 M2 38 M10 58 A8 19 R1 39 L10 59 B8 20 R2 40 K11 60 A7 Bounda...

Страница 16: ...A9 8 D2 36 W2 64 N11 92 U8 9 E1 37 T6 65 N10 93 A6 10 E2 38 V3 66 M11 94 D6 11 F1 39 V4 67 M10 95 K6 12 F2 40 U4 68 L11 96 B6 13 G1 41 W5 69 L10 97 K3 14 G2 42 V6 70 P6 98 A8 15 H1 43 W6 71 J11 99 B4...

Страница 17: ...O 1 26 VDD 0 3V V VIL Input LOW Voltage 12 for 2 5V I O 0 3 0 7 V for 1 8V I O 0 3 0 36 V IX Input Leakage Current except ZZ and MODE GND VI VDDQ 5 5 A Input Current of MODE Input VSS 30 A Input VDD 5...

Страница 18: ...e 209 FBGA Package Unit JA Thermal Resistance Junction to Ambient Test conditions follow standard test methods and procedures for measuring thermal impedance per EIA JESD51 24 63 16 3 15 2 C W JC Ther...

Страница 19: ...ip Select Set up 1 4 1 4 1 5 ns Hold Times tAH Address Hold After CLK Rise 0 4 0 4 0 5 ns tDH Data Input Hold After CLK Rise 0 4 0 4 0 5 ns tCENH CEN Hold After CLK Rise 0 4 0 4 0 5 ns tWEH WE BWx Hol...

Страница 20: ...e Burst sequence is determined by the status of the MODE 0 Linear 1 Interleaved Burst operations are optional WRITE D A1 1 2 3 4 5 6 7 8 9 CLK t CYC tCL tCH 10 CE tCEH tCES WE CEN tCENH tCENS BWx ADV...

Страница 21: ...ode See cycle description table for all possible signal conditions to deselect the device 26 I Os are in High Z when exiting ZZ sleep mode Switching Waveforms continued READ Q A3 4 5 6 7 8 9 10 CLK CE...

Страница 22: ...1470V25 167BZXI 51 85165 165 ball Fine Pitch Ball Grid Array 15 x 17 x 1 4mm Lead Free CY7C1472V25 167BZXI CY7C1474V25 167BGI 51 85167 209 ball Fine Pitch Ball Grid Array 14 22 1 76 mm CY7C1474V25 167...

Страница 23: ...C1470V25 250AXI 51 85050 100 Pin Thin Quad Flat Pack 14 x 20 x 1 4 mm Lead Free Industrial CY7C1472V25 250AXI CY7C1470V25 250BZI 51 85165 165 ball Fine Pitch Ball Grid Array 15 x 17 x 1 4 mm CY7C1472V...

Страница 24: ...NSIONS IN MILLIMETERS BODY LENGTH DIMENSIONS ARE MAX PLASTIC BODY SIZE INCLUDING MOLD MISMATCH 0 30 0 08 0 65 20 00 0 10 22 00 0 20 1 40 0 05 12 1 1 60 MAX 0 05 MIN 0 60 0 15 0 MIN 0 25 0 7 8X STAND O...

Страница 25: ...1 00 0 45 0 05 165X 0 25 M C A B 0 05 M C B A 0 15 4X 0 35 1 40 MAX SEATING PLANE 0 53 0 05 0 25 C 0 15 C PIN 1 CORNER TOP VIEW BOTTOM VIEW 2 3 4 5 6 7 8 9 10 10 00 14 00 B C D E F G H J K L M N 11 1...

Страница 26: ...press written agreement with Cypress Furthermore Cypress does not authorize its products for use as critical components in life support systems where a malfunction or failure may reasonably be expecte...

Страница 27: ...DQb DQb DQb to DQPa DQa DQa DQa DQa in page 4 Modified capacitance values in page 19 E 299511 See ECN SYT Removed 225 MHz offering and included 250 MHz speed bin Changed tCYC from 4 4 ns to 4 0 ns fo...

Страница 28: ...r H9 to VSS from VSSQ Added the Maximum Rating for Supply Voltage on VDDQ Relative to GND Changed tTH tTL from 25 ns to 20 ns and tTDOV from 5 ns to 10 ns in TAP AC Switching Characteristics table Upd...

Отзывы: