background image

 

CY7C1470V25
CY7C1472V25
CY7C1474V25

Document #: 38-05290 Rev. *I

Page 6 of 28

ADV/LD

Input-

Synchronous

Advance/Load Input used to advance the on-chip address counter or load a new address

When HIGH (and CEN is asserted LOW) the internal burst counter is advanced. When LOW, a 
new address can be loaded into the device for an access. After being deselected, ADV/LD should 
be driven LOW in order to load a new address.

CLK

Input-
Clock

Clock Input

. Used to capture all synchronous inputs to the device. CLK is qualified with CEN. 

CLK is only recognized if CEN is active LOW.

CE

1

Input-

Synchronous

Chip Enable 1 Input, active LOW

. Sampled on the rising edge of CLK. Used in conjunction with 

CE

2

 and CE

3

 to select/deselect the device. 

CE

2

Input-

Synchronous

Chip Enable 2 Input, active HIGH

. Sampled on the rising edge of CLK. Used in conjunction with 

CE

1

 and CE

3

 to select/deselect the device. 

CE

3

Input-

Synchronous

Chip Enable 3 Input, active LOW

. Sampled on the rising edge of CLK. Used in conjunction with 

CE

and

 

CE

to select/deselect the device. 

OE

Input-

Asynchronous

Output Enable, active LOW

. Combined with the synchronous logic block inside the device to 

control the direction of the I/O pins. When LOW, the I/O pins are allowed to behave as outputs. 
When deasserted HIGH, I/O pins are tri-stated, and act as input data pins. OE is masked during 
the data portion of a write sequence, during the first clock when emerging from a deselected state 
and when the device has been deselected. 

CEN

Input-

Synchronous

Clock Enable Input, active LOW

. When asserted LOW the clock signal is recognized by the 

SRAM. When deasserted HIGH the clock signal is masked. Since deasserting CEN does not 
deselect the device, CEN can be used to extend the previous cycle when required.

DQ

s

I/O-

Synchronous

Bidirectional Data I/O lines

. As inputs, they feed into an on-chip data register that is triggered 

by the rising edge of CLK. As outputs, they deliver the data contained in the memory location 
specified by A

[18:0]

 during the previous clock rise of the read cycle. The direction of the pins is 

controlled by OE and the internal control logic. When OE is asserted LOW, the pins can behave 
as outputs. When HIGH, DQ

a

–DQ

h

 are placed in a tri-state condition. The outputs are automat-

ically tri-stated during the data portion of a write sequence, during the first clock when emerging 
from a deselected state, and when the device is deselected, regardless of the state of OE.

DQP

X

I/O-

Synchronous

Bidirectional Data Parity I/O lines

. Functionally, these signals are identical to DQ

[71:0]

. During 

write sequences, DQP

a

 is controlled by BW

a

, DQP

b

 is controlled by BW

b

, DQP

c

 is controlled by 

BW

c

, and DQP

d

 is controlled by BW

d

, DQP

e

 is controlled by BW

e, 

DQP

f

 is controlled by BW

f, 

DQP

g

 is controlled by BW

g, 

DQP

h

 is controlled by BW

h

.

MODE

Input Strap Pin

Mode Input

. Selects the burst order of the device. Tied HIGH selects the interleaved burst order. 

Pulled LOW selects the linear burst order. MODE should not change states during operation. 
When left floating MODE will default HIGH, to an interleaved burst order.

TDO

JTAG Serial 

Output

Synchronous

Serial data-out to the JTAG circuit

. Delivers data on the negative edge of TCK.

TDI

JTAG Serial Input

Synchronous

Serial data-In to the JTAG circuit

. Sampled on the rising edge of TCK.

TMS

Test Mode Select 

Synchronous

This pin controls the Test Access Port state machine

. Sampled on the rising edge of TCK. 

TCK

JTAG Clock

Clock input to the JTAG circuitry

V

DD

Power Supply

Power supply inputs to the core of the device

.

V

DDQ

I/O Power Supply

Power supply for the I/O circuitry

V

SS

Ground

Ground for the device

. Should be connected to ground of the system.

NC

No connects

. This pin is not connected to the die.

NC(144M, 
288M, 
576M, 1G)

These pins are not connected

. They will be used for expansion to the 144M, 288M, 576M and 

1G densities.

ZZ

Input-

Asynchronous

ZZ “Sleep” Input

. This active HIGH input places the device in a non-time critical “sleep” condition 

with data integrity preserved. For normal operation, this pin has to be LOW or left floating.
ZZ pin has an internal pull-down.

Pin Definitions

 (continued)

Pin Name

I/O Type

Pin Description

[+] Feedback 

Содержание CY7C1470V25

Страница 1: ...equired to enable consec utive Read Write operations with data being transferred on every clock cycle This feature dramatically improves the throughput of data in systems that require frequent Write R...

Страница 2: ...am CY7C1472V25 4M x 18 Logic Block Diagram CY7C1474V25 1M x 72 A0 A1 A C MODE CE1 CE2 CE3 OE READ LOGIC DQs DQPa DQPb DQPc DQPd DQPe DQPf DQPg DQPh D A T A S T E E R I N G O U T P U T B U F F E R S ME...

Страница 3: ...Z CY7C1470V25 100 pin TQFP Pinout A A A A A 1 A 0 V SS V DD A A A A A A A NC NC VDDQ VSS NC DQPa DQa DQa VSS VDDQ DQa DQa VSS NC VDD DQa DQa VDDQ VSS DQa DQa NC NC VSS VDDQ NC NC NC NC NC NC VDDQ VSS...

Страница 4: ...D NC VDD DQa VDD VDDQ DQa VDDQ VDD VDD VDDQ VDD VDDQ DQa VDDQ A A VSS A A A DQb DQb DQb ZZ DQa DQa DQPa DQa A VDDQ A 2 3 4 5 6 7 1 A B C D E F G H J K L M N P R TDO NC 576M NC 1G NC NC DQPb NC DQb A C...

Страница 5: ...VSS VSS VSS ZZ VSS VSS VSS VSS NC VDDQ VSS VSS NC VSS VSS VSS VSS VSS VSS NC VSS VDDQ VDDQ VDDQ VDDQ VDDQ NC VDDQ VDDQ VDDQ VDDQ NC VDDQ VDDQ VDDQ VDDQ NC VDDQ VDDQ VDDQ VDDQ VDDQ VDDQ VDDQ VDDQ VDDQ...

Страница 6: ...by A 18 0 during the previous clock rise of the read cycle The direction of the pins is controlled by OE and the internal control logic When OE is asserted LOW the pins can behave as outputs When HIGH...

Страница 7: ...and A1 in the burst sequence and will wrap around when incre mented sufficiently A HIGH input on ADV LD will increment the internal burst counter regardless of the state of chip enables inputs or WE...

Страница 8: ...rameter is sampled 0 ns Truth Table 1 2 3 4 5 6 7 Operation Address Used CE ZZ ADV LD WE BWx OE CEN CLK DQ Deselect Cycle None H L L X X X L L H Tri State Continue Deselect Cycle None X L H X X X L L...

Страница 9: ...Write Bytes d a L L H H L Write Bytes d b L L H L H Write Bytes d b a L L H L L Write Bytes d c L L L H H Write Bytes d c a L L L H L Write Bytes d c b L L L L H Write All Bytes L L L L L Function CY7...

Страница 10: ...ball is pulled up internally resulting in a logic HIGH level Test Data In TDI The TDI ball is used to serially input information into the registers and can be connected to the input of any of the regi...

Страница 11: ...SAMPLE PRELOAD rather it performs a capture of the I O ring when these instructions are executed Instructions are loaded into the TAP controller during the Shift IR state when the instruction register...

Страница 12: ...n a board Reserved These instructions are not implemented but are reserved for future use Do not use these instructions TAP Timing t TL Test Clock TCK 1 2 3 4 5 6 Test Mode Select TMS tTH Test Data Ou...

Страница 13: ...H2 Output HIGH Voltage IOH 100 A VDDQ 2 5V 2 1 V VDDQ 1 8V 1 6 V VOL1 Output LOW Voltage IOL 1 0 mA VDDQ 2 5V 0 4 V VOL2 Output LOW Voltage IOL 100 A VDDQ 2 5V 0 2 V VDDQ 1 8V 0 2 V VIH Input HIGH Vol...

Страница 14: ...between TDI and TDO This operation does not affect SRAM operations SAMPLE Z 010 Captures I O ring contents Places the boundary scan register between TDI and TDO Forces all SRAM output drivers to a Hi...

Страница 15: ...31 P10 51 G10 71 B2 12 L1 32 R9 52 F10 13 J2 33 R10 53 E10 14 M1 34 R11 54 A9 15 N1 35 N11 55 B9 16 K2 36 M11 56 A10 17 L2 37 L11 57 B10 18 M2 38 M10 58 A8 19 R1 39 L10 59 B8 20 R2 40 K11 60 A7 Bounda...

Страница 16: ...A9 8 D2 36 W2 64 N11 92 U8 9 E1 37 T6 65 N10 93 A6 10 E2 38 V3 66 M11 94 D6 11 F1 39 V4 67 M10 95 K6 12 F2 40 U4 68 L11 96 B6 13 G1 41 W5 69 L10 97 K3 14 G2 42 V6 70 P6 98 A8 15 H1 43 W6 71 J11 99 B4...

Страница 17: ...O 1 26 VDD 0 3V V VIL Input LOW Voltage 12 for 2 5V I O 0 3 0 7 V for 1 8V I O 0 3 0 36 V IX Input Leakage Current except ZZ and MODE GND VI VDDQ 5 5 A Input Current of MODE Input VSS 30 A Input VDD 5...

Страница 18: ...e 209 FBGA Package Unit JA Thermal Resistance Junction to Ambient Test conditions follow standard test methods and procedures for measuring thermal impedance per EIA JESD51 24 63 16 3 15 2 C W JC Ther...

Страница 19: ...ip Select Set up 1 4 1 4 1 5 ns Hold Times tAH Address Hold After CLK Rise 0 4 0 4 0 5 ns tDH Data Input Hold After CLK Rise 0 4 0 4 0 5 ns tCENH CEN Hold After CLK Rise 0 4 0 4 0 5 ns tWEH WE BWx Hol...

Страница 20: ...e Burst sequence is determined by the status of the MODE 0 Linear 1 Interleaved Burst operations are optional WRITE D A1 1 2 3 4 5 6 7 8 9 CLK t CYC tCL tCH 10 CE tCEH tCES WE CEN tCENH tCENS BWx ADV...

Страница 21: ...ode See cycle description table for all possible signal conditions to deselect the device 26 I Os are in High Z when exiting ZZ sleep mode Switching Waveforms continued READ Q A3 4 5 6 7 8 9 10 CLK CE...

Страница 22: ...1470V25 167BZXI 51 85165 165 ball Fine Pitch Ball Grid Array 15 x 17 x 1 4mm Lead Free CY7C1472V25 167BZXI CY7C1474V25 167BGI 51 85167 209 ball Fine Pitch Ball Grid Array 14 22 1 76 mm CY7C1474V25 167...

Страница 23: ...C1470V25 250AXI 51 85050 100 Pin Thin Quad Flat Pack 14 x 20 x 1 4 mm Lead Free Industrial CY7C1472V25 250AXI CY7C1470V25 250BZI 51 85165 165 ball Fine Pitch Ball Grid Array 15 x 17 x 1 4 mm CY7C1472V...

Страница 24: ...NSIONS IN MILLIMETERS BODY LENGTH DIMENSIONS ARE MAX PLASTIC BODY SIZE INCLUDING MOLD MISMATCH 0 30 0 08 0 65 20 00 0 10 22 00 0 20 1 40 0 05 12 1 1 60 MAX 0 05 MIN 0 60 0 15 0 MIN 0 25 0 7 8X STAND O...

Страница 25: ...1 00 0 45 0 05 165X 0 25 M C A B 0 05 M C B A 0 15 4X 0 35 1 40 MAX SEATING PLANE 0 53 0 05 0 25 C 0 15 C PIN 1 CORNER TOP VIEW BOTTOM VIEW 2 3 4 5 6 7 8 9 10 10 00 14 00 B C D E F G H J K L M N 11 1...

Страница 26: ...press written agreement with Cypress Furthermore Cypress does not authorize its products for use as critical components in life support systems where a malfunction or failure may reasonably be expecte...

Страница 27: ...DQb DQb DQb to DQPa DQa DQa DQa DQa in page 4 Modified capacitance values in page 19 E 299511 See ECN SYT Removed 225 MHz offering and included 250 MHz speed bin Changed tCYC from 4 4 ns to 4 0 ns fo...

Страница 28: ...r H9 to VSS from VSSQ Added the Maximum Rating for Supply Voltage on VDDQ Relative to GND Changed tTH tTL from 25 ns to 20 ns and tTDOV from 5 ns to 10 ns in TAP AC Switching Characteristics table Upd...

Отзывы: