background image

CY7C1410AV18, CY7C1425AV18
CY7C1412AV18, CY7C1414AV18

Document #: 38-05615 Rev. *E

Page 8 of 29

Functional Overview

The CY7C1410AV18, CY7C1425AV18, CY7C1412AV18, and
CY7C1414AV18 are synchronous pipelined Burst SRAMs with a
read port and a write port. The read port is dedicated to read
operations and the write port is dedicated to write operations.
Data flows into the SRAM through the write port and flows out
through the read port. These devices multiplex the address
inputs to minimize the number of address pins required. By
having separate read and write ports, the QDR-II completely
eliminates the need to “turn-around” the data bus and avoids any
possible data contention, thereby simplifying system design.
Each access consists of two 8-bit data transfers in the case of
CY7C1410AV18, two 9-bit data transfers in the case of
CY7C1425AV18, two 18-bit data transfers in the case of
CY7C1412AV18, and two 36-bit data transfers in the case of
CY7C1414AV18 in one clock cycle. 

Accesses for both ports are initiated on the rising edge of the
positive input clock (K). All synchronous input timing is
referenced from the rising edge of the input clocks (K and K) and
all output timing is referenced to the rising edge of the output
clocks (C and C, or K and K when in single clock mode).

All synchronous data inputs (D

[x:0]

) pass through input registers

controlled by the input clocks (K and K). All synchronous data
outputs (Q

[x:0]

) pass through output registers controlled by the

rising edge of the output clocks (C and C, or K and K when in
single clock mode). 

All synchronous control (RPS, WPS, BWS

[x:0]

) inputs pass

through input registers controlled by the rising edge of the input
clocks (K and K).

CY7C1412AV18 is described in the following sections. The same
basic descriptions apply to CY7C1410AV18, CY7C1425AV18,
and CY7C1414AV18.

Read Operations

The CY7C1412AV18 is organized internally as two arrays of 1M
x 18. Accesses are completed in a burst of two sequential 18-bit
data words. Read operations are initiated by asserting RPS
active at the rising edge of the positive input clock (K). The
address is latched on the rising edge of the K clock. The address
presented to the address inputs is stored in the read address
register. Following the next K clock rise the corresponding lowest
order 18-bit word of data is driven onto the Q

[17:0]

 using C as the

output timing reference. On the subsequent rising edge of C, the
next 18-bit data word is driven onto the Q

[17:0]

. The requested

data is valid 0.45 ns from the rising edge of the output clock (C
and C or K and K when in single clock mode). 

Synchronous internal circuitry automatically tri-states the outputs
following the next rising edge of the output clocks (C/C). This
allows for a seamless transition between devices without the
insertion of wait states in a depth expanded memory. 

Write Operations

Write operations are initiated by asserting WPS active at the
rising edge of the positive input clock (K). On the same K clock
rise, the data presented to D

[17:0]

 is latched and stored into the

lower 18-bit write data register, provided BWS

[1:0]

 are both

asserted active. On the subsequent rising edge of the negative
input clock (K), the address is latched and the information
presented to D

[17:0]

 is stored into the write data register, provided

BWS

[1:0]

 are both asserted active. The 36 bits of data are then

written into the memory array at the specified location. When
deselected, the write port ignores all inputs after completion of
pending write operations. 

Byte Write Operations

Byte write operations are supported by the CY7C1412AV18. A
write operation is initiated as described in the 

Write Operations

section. The bytes that are written are determined by BWS

0

 and

BWS

1

, which are sampled with each 18-bit data word. Asserting

the appropriate Byte Write Select input during the data portion of
a write latches the data being presented and writes it into the
device. Deasserting the Byte Write Select input during the data
portion of a write allows the data stored in the device for that byte
to remain unaltered. This feature can be used to simplify read,
modify, or write operations to a byte write operation.

Single Clock Mode

The CY7C1412AV18 can be used with a single clock that
controls both the input and output registers. In this mode, the
device recognizes only a single pair of input clocks (K and K) that
control both the input and output registers. This operation is
identical to the operation if the device had zero skew between
the K/K and C/C clocks. All timing parameters remain the same
in this mode. To use this mode of operation, the user must tie C
and C HIGH at power on. This function is a strap option and not
alterable during device operation.

Concurrent Transactions

The read and write ports on the CY7C1412AV18 operate
independently of one another. As each port latches the address
inputs on different clock edges, the user can read or write to any
location, regardless of the transaction on the other port. The user
can start reads and writes in the same clock cycle. If the ports
access the same location at the same time, the SRAM delivers
the most recent information associated with the specified
address location. This includes forwarding data from a write
cycle that was initiated on the previous K clock rise.

Depth Expansion

The CY7C1412AV18 has a port select input for each port. This
enables for easy depth expansion. Both port selects are sampled
on the rising edge of the positive input clock only (K). Each port
select input can deselect the specified port. Deselecting a port
does not affect the other port. All pending transactions (read and
write) are completed prior to the device being deselected. 

[+] Feedback 

Содержание CY7C1410AV18

Страница 1: ...two separate ports the read port and the write port to access the memory array The read port has data outputs to support read operations and the write port has data inputs to support write operations...

Страница 2: ...d Data Reg RPS WPS Control Logic Address Register Reg Reg Reg 8 21 16 8 NWS 1 0 VREF Write Add Decode Write Reg 8 A 20 0 21 CQ CQ DOFF Q 7 0 8 8 Write Reg C C 2M x 8 Array 8 2M x 9 Array CLK A 20 0 Ge...

Страница 3: ...RPS WPS Control Logic Address Register Reg Reg Reg 18 20 36 18 BWS 1 0 VREF Write Add Decode Write Reg 18 A 19 0 20 CQ CQ DOFF Q 17 0 18 18 Write Reg C C 1M x 18 Array 18 512K x 36 Array CLK A 18 0 Ge...

Страница 4: ...DQ VSS VSS VSS VDDQ NC NC Q0 M NC NC NC VSS VSS VSS VSS VSS NC NC D0 N NC D7 NC VSS A A A VSS NC NC NC P NC NC Q7 A A C A A NC NC NC R TDO TCK A A A C A A A TMS TDI CY7C1425AV18 4M x 9 1 2 3 4 5 6 7 8...

Страница 5: ...NC D0 Q0 R TDO TCK A A A C A A A TMS TDI CY7C1414AV18 1M x 36 1 2 3 4 5 6 7 8 9 10 11 A CQ NC 288M NC 72M WPS BWS2 K BWS1 RPS A NC 144M CQ B Q27 Q18 D18 A BWS3 K BWS0 A D17 Q17 Q8 C D27 Q28 D19 VSS A...

Страница 6: ...for CY7C1410AV18 4M x 9 2 arrays each of 2M x 9 for CY7C1425AV18 2M x 18 2 arrays each of 1M x 18 for CY7C1412AV18 and 1M x 36 2 arrays each of 512K x 36 for CY7C1414AV18 Therefore only 21 address in...

Страница 7: ...Alternatively this pin can be connected directly to VDDQ which enables the minimum impedance mode This pin cannot be connected directly to GND or left unconnected DOFF Input DLL Turn Off Active LOW Co...

Страница 8: ...between devices without the insertion of wait states in a depth expanded memory Write Operations Write operations are initiated by asserting WPS active at the rising edge of the positive input clock K...

Страница 9: ...to K and CQ is generated with respect to K The timing for the echo clocks is shown in the Switching Characteristics on page 23 DLL These chips use a Delay Lock Loop DLL that is designed to function b...

Страница 10: ...0 is written into the device D 17 9 remains unaltered H L L H During the data portion of a write sequence CY7C1410AV18 only the upper nibble D 7 4 is written into the device D 3 0 remains unaltered CY...

Страница 11: ...into the device D 35 9 remains unaltered L H H H L H During the Data portion of a write sequence only the lower byte D 8 0 is written into the device D 35 9 remains unaltered H L H H L H During the Da...

Страница 12: ...edge of TCK Instruction Register Three bit instructions can be serially loaded into the instruction register This register is loaded when it is placed between the TDI and TDO pins as shown in TAP Con...

Страница 13: ...scan register After the data is captured it is possible to shift out the data by putting the TAP into the Shift DR state This places the boundary scan register between the TDI and TDO pins PRELOAD pla...

Страница 14: ...oller follows 9 TEST LOGIC RESET TEST LOGIC IDLE SELECT DR SCAN CAPTURE DR SHIFT DR EXIT1 DR PAUSE DR EXIT2 DR UPDATE DR 1 0 1 1 0 1 0 1 0 0 0 1 1 1 0 1 0 1 0 0 0 1 0 1 1 0 1 0 0 1 1 0 SELECT IR SCAN...

Страница 15: ...GH Voltage 0 65VDD VDD 0 3 V VIL Input LOW Voltage 0 3 0 35VDD V IX Input and Output Load Current GND VI VDD 5 5 A 0 0 1 2 29 30 31 Boundary Scan Register Identification Register 0 1 2 108 0 1 2 Instr...

Страница 16: ...IH TDI Hold after Clock Rise 5 ns tCH Capture Hold after Clock Rise 5 ns Output Times tTDOV TCK Clock LOW to TDO Valid 10 ns tTDOX TCK Clock LOW to TDO Invalid 0 ns TAP Timing and Test Conditions Figu...

Страница 17: ...ruction Codes Instruction Code Description EXTEST 000 Captures the input and output ring contents IDCODE 001 Loads the ID register with the vendor ID code and places the register between TDI and TDO T...

Страница 18: ...8P 35 10E 63 2A 91 3L 8 9R 36 10D 64 1A 92 1M 9 11P 37 9E 65 2B 93 1L 10 10P 38 10C 66 3B 94 3N 11 10N 39 11D 67 1C 95 3M 12 9P 40 9C 68 1B 96 1N 13 10M 41 9D 69 3D 97 2M 14 11N 42 11B 70 3C 98 3P 15...

Страница 19: ...K K for 1024 cycles to lock the DLL DLL Constraints DLL uses K clock as its synchronizing input The input must have low phase jitter which is specified as tKC Var The DLL functions at frequencies dow...

Страница 20: ...HIGH Voltage Note 16 VDDQ 2 0 12 VDDQ 2 0 12 V VOL Output LOW Voltage Note 17 VDDQ 2 0 12 VDDQ 2 0 12 V VOH LOW Output HIGH Voltage IOH 0 1 mA Nominal Impedance VDDQ 0 2 VDDQ V VOL LOW Output LOW Vol...

Страница 21: ...20 x36 475 200MHz x8 350 mA x9 350 x18 370 x36 420 167MHz x8 330 mA x9 330 x18 345 x36 390 AC Electrical Characteristics Over the Operating Range 11 Parameter Description Test Conditions Min Typ Max U...

Страница 22: ...tion to Ambient Test conditions follow standard test methods and procedures for measuring thermal impedance in accordance with EIA JESD51 17 2 C W JC Thermal Resistance Junction to Case 3 2 C W Figure...

Страница 23: ...gle Clock Mode to Data Valid 0 45 0 45 0 50 ns tDOH tCHQX Data Output Hold after Output C C Clock Rise Active to Active 0 45 0 45 0 50 ns tCCQO tCHCQV C C Clock Rise to Echo Clock Valid 0 45 0 45 0 50...

Страница 24: ...D50 D51 D61 D31 D11 D10 D60 Q C C DON T CARE UNDEFINED t CQ CQ tKHCH tCO tKHCH tCLZ CHZ tKH tKL Q00 Q01 Q20 tKHKH tCYC Q21 Q40 Q41 tCQD tDOH tCCQO tCQOH tCCQO tCQOH tCQDOH Notes 26 Q00 refers to outp...

Страница 25: ...Fine Pitch Ball Grid Array 15 x 17 x 1 4 mm Industrial CY7C1425AV18 250BZI CY7C1412AV18 250BZI CY7C1414AV18 250BZI CY7C1410AV18 250BZXI 51 85195 165 Ball Fine Pitch Ball Grid Array 15 x 17 x 1 4 mm Pb...

Страница 26: ...8 167BZXC CY7C1410AV18 167BZI 51 85195 165 Ball Fine Pitch Ball Grid Array 15 x 17 x 1 4 mm Industrial CY7C1425AV18 167BZI CY7C1412AV18 167BZI CY7C1414AV18 167BZI CY7C1410AV18 167BZXI 51 85195 165 Bal...

Страница 27: ...0 25 M C A B 0 05 M C B A 0 15 4X 0 35 0 06 1 40 MAX SEATING PLANE 0 53 0 05 0 25 C 0 15 C PIN 1 CORNER TOP VIEW BOTTOM VIEW 2 3 4 5 6 7 8 9 10 10 00 14 00 B C D E F G H J K L M N 11 11 10 9 8 6 7 5 4...

Страница 28: ...Power up sequence and Wave form on page 19 Added foot notes 13 14 15 on page 19 Replaced Three state with Tri state Changed the description of IX from Input Load Current to Input Leakage Current on pa...

Страница 29: ...presentation of this Source Code except as specified above is prohibited without the express written permission of Cypress Disclaimer CYPRESS MAKES NO WARRANTY OF ANY KIND EXPRESS OR IMPLIED WITH REGA...

Отзывы: