background image

 

CY7C1364C

Document #: 38-05689 Rev. *E

Page 5 of 18

Functional Overview

All synchronous inputs pass through input registers controlled
by the rising edge of the clock. All data outputs pass through
output registers controlled by the rising edge of the clock. 

The CY7C1364C supports secondary cache in systems
utilizing either a linear or interleaved burst sequence. The
interleaved burst order supports Pentium and i486

processors. The linear burst sequence is suited for processors
that utilize a linear burst sequence. The burst order is user
selectable, and is determined by sampling the MODE input.
Accesses can be initiated with either the Processor Address
Strobe (ADSP) or the Controller Address Strobe (ADSC).
Address advancement through the burst sequence is
controlled by the ADV input. A two-bit on-chip wraparound
burst counter captures the first address in a burst sequence
and automatically increments the address for the rest of the
burst access.

Byte Write operations are qualified with the Byte Write Enable
(BWE) and Byte Write Select (BW

[A:D]

) inputs. A Global Write

Enable (GW) overrides all Byte Write inputs and writes data to
all four bytes. All writes are simplified with on-chip
synchronous self-timed Write circuitry.

Three synchronous Chip Selects (CE

1

, CE

2

, CE

3

) and an

asynchronous Output Enable (OE) provide for easy bank
selection and output tri-state control. ADSP is ignored if CE

1

is HIGH.

Single Read Accesses

This access is initiated when the following conditions are
satisfied at clock rise: (1) ADSP or ADSC is asserted LOW,
(2) CE

1

, CE

2

, CE

3

 are all asserted active, and (3) the Write

signals (GW, BWE) are all deasserted HIGH. ADSP is ignored
if CE

1

 is HIGH. The address presented to the address inputs

(A) is stored into the address advancement logic and the
address register while being presented to the memory array.
The corresponding data is allowed to propagate to the input of
the output registers. At the rising edge of the next clock the
data is allowed to propagate through the output register and
onto the data bus within t

CO

 if OE is active LOW. The only

exception occurs when the SRAM is emerging from a
deselected state to a selected state, its outputs are always
tri-stated during the first cycle of the access. After the first cycle
of the access, the outputs are controlled by the OE signal.
Consecutive single Read cycles are supported. Once the
SRAM is deselected at clock rise by the chip select and either
ADSP or ADSC signals, its output will tri-state immediately.

Single Write Accesses Initiated by ADSP

This access is initiated when both of the following conditions
are satisfied at clock rise: (1) ADSP is asserted LOW, and
(2) CE

1

, CE

2

, CE

3

 are all asserted active. The address

presented to A is loaded into the address register and the
address advancement logic while being delivered to the RAM
array. The Write signals (GW, BWE, and BW

[A:D]

) and ADV

inputs are ignored during this first cycle. 

ADSP-triggered Write accesses require two clock cycles to
complete. If GW is asserted LOW on the second clock rise, the
data presented to the DQ inputs is written into the corre-
sponding address location in the memory array. If GW is HIGH,
then the Write operation is controlled by BWE and BW

[A:D]

signals. The CY7C1364C provides Byte Write capability that
is described in the Write Cycle Descriptions table. Asserting
the Byte Write Enable input (BWE) with the selected Byte
Write (BW

[A:D]

) input, will selectively write to only the desired

bytes. Bytes not selected during a Byte Write operation will
remain unaltered. A synchronous self-timed Write mechanism
has been provided to simplify the Write operations. 

Because the CY7C1364C is a common I/O device, the Output
Enable (OE) must be deasserted HIGH before presenting data
to the DQ inputs. Doing so will tri-state the output drivers. As
a safety precaution, DQ are automatically tri-stated whenever
a Write cycle is detected, regardless of the state of OE.

Single Write Accesses Initiated by ADSC

ADSC Write accesses are initiated when the following condi-
tions are satisfied: (1) ADSC is asserted LOW, (2) ADSP is
deasserted HIGH, (3) CE

1

, CE

2

, CE

3

 are all asserted active,

and (4) the appropriate combination of the Write inputs (GW,
BWE, and BW

[A:D]

) are asserted active to conduct a Write to

the desired byte(s). ADSC-triggered Write accesses require a
single clock cycle to complete. The address presented to A is
loaded into the address register and the address
advancement logic while being delivered to the memory array.
The ADV input is ignored during this cycle. If a global Write is
conducted, the data presented to the DQ is written into the
corresponding address location in the memory core. If a Byte
Write is conducted, only the selected bytes are written. Bytes
not selected during a Byte Write operation will remain
unaltered. A synchronous self-timed Write mechanism has
been provided to simplify the Write operations. 

Because the CY7C1364C is a common I/O device, the Output
Enable (OE) must be deasserted HIGH before presenting data
to the DQ inputs. Doing so will tri-state the output drivers. As
a safety precaution, DQs are automatically tri-stated whenever
a Write cycle is detected, regardless of the state of OE.

V

DDQ

4, 11, 20, 27, 54, 61, 70, 77

I/O Power 

Supply

Power supply for the I/O circuitry

V

SSQ

5, 10, 21, 26, 55, 60, 71, 76

I/O Ground

Ground for the I/O circuitry

MODE

31

Input-

Static

Selects Burst Order

. When tied to GND selects linear burst sequence. 

When tied to V

DD

 or left floating selects interleaved burst sequence. 

This is a strap pin and should remain static during device operation. 
Mode pin has an internal pull-up.

NC

1, 14, 16, 30, 38, 39, 42, 
51, 66, 80

No Connects

. Not internally connected to the die

Pin Definitions

  (continued)

Name

TQFP

I/O

Description

[+] Feedback 

Содержание CY7C1364C

Страница 1: ...inputs include the Output Enable OE and the ZZ pin Addresses and chip enables are registered at rising edge of clock when either Address Strobe Processor ADSP or Address Strobe Controller ADSC are ac...

Страница 2: ...QA NC NC DQC DQC VDDQ VSSQ DQC DQC DQC DQC VSSQ VDDQ DQC DQC NC VDD NC VSS DQD DQD VDDQ VSSQ DQD DQD DQD DQD VSSQ VDDQ DQD DQD NC A A CE 1 CE 2 BW D BW C BW B BW A A V DD V SS CLK GW BWE OE ADSC ADSP...

Страница 3: ...DQD VDDQ VSSQ DQD DQD DQD DQD VSSQ VDDQ DQD DQD NC A A CE 1 CE 2 BW D BW C BW B BW A CE 3 V DD V SS CLK GW BWE OE ADSC ADSP ADV A A 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 2...

Страница 4: ...hen a new external address is loaded OE 86 Input Asynchronous Output Enable asynchronous input active LOW Controls the direction of the I O pins When LOW the I O pins behave as outputs When deasserted...

Страница 5: ...ress advancement logic while being delivered to the RAM array The Write signals GW BWE and BW A D and ADV inputs are ignored during this first cycle ADSP triggered Write accesses require two clock cyc...

Страница 6: ...egrity is guaranteed Accesses pending when entering the sleep mode are not considered valid nor is the completion of the operation guaranteed The device must be deselected prior to entering the sleep...

Страница 7: ...ri State Write Continue Write Next L X X H X H H X Tri State Write Suspend Write Current L X X X H H H X Tri State Write Suspend Write Current L X X H X H H X Tri State Write ZZ Sleep None H X X X X X...

Страница 8: ...e Bytes B A H L H H L L Write Byte C DQC H L H L H H Write Bytes C A H L H L H L Write Bytes C B H L H L L H Write Bytes C B A H L H L L L Write Byte D DQD H L L H H H Write Bytes D A H L L H H L Writ...

Страница 9: ...V for 2 5V I O 1 7 VDD 0 3V V VIL Input LOW Voltage 9 for 3 3 V I O 0 3 0 8 V for 2 5V I O 0 3 0 7 V IX Input Leakage Current except ZZ and MODE GND VI VDDQ 5 5 A Input Current of MODE Input VSS 30 A...

Страница 10: ...ollow standard test methods and procedures for measuring thermal impedance per EIA JESD51 29 41 C W JC Thermal Resistance Junction to Case 6 13 C W AC Test Loads and Waveforms Note 11 Tested initially...

Страница 11: ...ld Times tAH Address Hold after CLK Rise 0 4 0 5 0 5 ns tADH ADSP ADSC Hold after CLK Rise 0 4 0 5 0 5 ns tADVH ADV Hold after CLK Rise 0 4 0 5 0 5 ns tWEH GW BWE BW A D Hold after CLK Rise 0 4 0 5 0...

Страница 12: ...HIGH or CE2 is LOW or CE3 is HIGH tCYC t CL CLK ADSP t ADH t ADS ADDRESS t CH OE ADSC CE tAH tAS A1 tCEH tCES GW BWE BW A D Data Out Q High Z tCLZ tDOH tCO ADV tOEHZ tCO tOEV tOELZ tCHZ ADV suspends...

Страница 13: ...ADS ADDRESS tCH OE ADSC CE tAH tAS A1 tCEH tCES BWE BW A D Data Out Q High Z ADV BURST READ BURST WRITE D A2 D A2 1 D A2 1 D A1 D A3 D A3 1 D A3 2 D A2 3 A2 A3 Data In D Extended BURST WRITE D A2 2 Si...

Страница 14: ...e is performed 21 GW is HIGH Switching Waveforms continued tCYC tCL CLK ADSP tADH tADS ADDRESS tCH OE ADSC CE tAH tAS A2 tCEH tCES BWE BW A D Data Out Q High Z ADV Single WRITE D A3 A4 A5 A6 D A5 D A6...

Страница 15: ...entering ZZ mode See Cycle Descriptions table for all possible signal conditions to deselect the device 23 DQs are in High Z when exiting ZZ sleep mode Switching Waveforms continued t ZZ I SUPPLY CLK...

Страница 16: ...Thin Quad Flat Pack 14 x 20 x 1 4 mm Lead Free 2 Chip Enable 200 CY7C1364C 200AXC 51 85050 100 pin Thin Quad Flat Pack 14 x 20 x 1 4 mm Lead Free 3 Chip Enable Commercial CY7C1364C 200AJXC 100 pin Th...

Страница 17: ...upport systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges i486 is a trademark and Intel and Pentium are registered t...

Страница 18: ...ion Updated Ordering Information Table B 377095 See ECN PCI Changed ISB2 from 30 to 40 mA Modified test condition in note 9 from VIH VDD to VIH VDD C 408725 See ECN RXU Changed address of Cypress Semi...

Отзывы: