background image

 

CY7C1306BV25

CY7C1303BV25

Document #: 38-05627 Rev. *A

Page 9 of 19

is loaded into the instruction register upon power-up or
whenever the TAP controller is given a test logic reset state.

SAMPLE Z

The SAMPLE Z instruction causes the boundary scan register
to be connected between the TDI and TDO pins when the TAP
controller is in a Shift-DR state. The SAMPLE Z command puts
the output bus into a High-Z state until the next command is
given during the “Update IR” state.

SAMPLE/PRELOAD

SAMPLE/PRELOAD is a 1149.1 mandatory instruction. When
the SAMPLE/PRELOAD instructions are loaded into the
instruction register and the TAP controller is in the Capture-DR
state, a snapshot of data on the inputs and output pins is
captured in the boundary scan register. 

The user must be aware that the TAP controller clock can only
operate at a frequency up to 10 MHz, while the SRAM clock
operates more than an order of magnitude faster. Because
there is a large difference in the clock frequencies, it is
possible that during the Capture-DR state, an input or output
will undergo a transition. The TAP may then try to capture a
signal while in transition (metastable state). This will not harm
the device, but there is no guarantee as to the value that will
be captured. Repeatable results may not be possible.

To guarantee that the boundary scan register will capture the
correct value of a signal, the SRAM signal must be stabilized
long enough to meet the TAP controller's capture set-up plus
hold times (t

CS

 and t

CH

). The SRAM clock input might not be

captured correctly if there is no way in a design to stop (or
slow) the clock during a SAMPLE/PRELOAD instruction. If this
is an issue, it is still possible to capture all other signals and
simply ignore the value of the CK and CK captured in the
boundary scan register.

Once the data is captured, it is possible to shift out the data by
putting the TAP into the Shift-DR state. This places the
boundary scan register between the TDI and TDO pins.

PRELOAD allows an initial data pattern to be placed at the
latched parallel outputs of the boundary scan register cells
prior to the selection of another boundary scan test operation.

The shifting of data for the SAMPLE and PRELOAD phases
can occur concurrently when required—that is, while data
captured is shifted out, the preloaded data can be shifted in.

BYPASS

When the BYPASS instruction is loaded in the instruction
register and the TAP is placed in a Shift-DR state, the bypass
register is placed between the TDI and TDO pins. The
advantage of the BYPASS instruction is that it shortens the
boundary scan path when multiple devices are connected
together on a board.

EXTEST

The EXTEST instruction enables the preloaded data to be
driven out through the system output pins. This instruction also
selects the boundary scan register to be connected for serial
access between the TDI and TDO in the shift-DR controller
state.

EXTEST Output Bus Tri-state

IEEE Standard 1149.1 mandates that the TAP controller be
able to put the output bus into a tri-state mode. 

The boundary scan register has a special bit located at bit #47.
When this scan cell, called the “extest output bus tri-state”, is
latched into the preload register during the “Update-DR” state
in the TAP controller, it will directly control the state of the
output (Q-bus) pins, when the EXTEST is entered as the
current instruction. When HIGH, it will enable the output
buffers to drive the output bus. When LOW, this bit will place
the output bus into a High-Z condition. 

This bit can be set by entering the SAMPLE/PRELOAD or
EXTEST command, and then shifting the desired bit into that
cell, during the “Shift-DR” state. During “Update-DR”, the value
loaded into that shift-register cell will latch into the preload
register. When the EXTEST instruction is entered, this bit will
directly control the output Q-bus pins. Note that this bit is
pre-set HIGH to enable the output when the device is
powered-up, and also when the TAP controller is in the
“Test-Logic-Reset” state. 

Reserved

These instructions are not implemented but are reserved for
future use. Do not use these instructions.

[+] Feedback 

Содержание CY7C1303BV25

Страница 1: ...ts to support Read operations and the Write Port has dedicated Data inputs to support Write operations Access to each port is accomplished through a common address bus The Read address is latched on the rising edge of the K clock and the Write address is latched on the rising edge of K clock QDR has separate data inputs and data outputs to completely eliminate the need to turn around the data bus ...

Страница 2: ...18 18 A 18 0 19 18 C C BWS1 Logic Block Diagram CY7C1303BV25 256Kx36 CLK A 17 0 Gen K K Control Logic Address Register D 35 0 Read Add Decode Read Data Reg RPS WPS Q 35 0 Control Logic Address Register Reg Reg Reg 36 18 36 72 Write 36 BWS0 Vref Write Add Decode Data Reg Write Data Reg Memory Array 256Kx36 Memory Array 36 36 A 17 0 18 36 C C BWS1 BWS2 BWS3 Logic Block Diagram CY7C1306BV25 Selection...

Страница 3: ...D16 VSS VSS VSS VSS VSS NC Q1 D2 N NC D17 Q16 VSS A A A VSS NC NC D1 P NC NC Q17 A A C A A NC D0 Q0 R TDO TCK A A A C A A A TMS TDI CY7C1306BV25 512K x 36 1 2 3 4 5 6 7 8 9 10 11 A NC Gnd 288M NC 72M WPS BWS2 K BWS1 RPS NC 36M Gnd 144M NC B Q27 Q18 D18 A BWS3 K BWS0 A D17 Q17 Q8 C D27 Q28 D19 VSS A A A VSS D16 Q7 D8 D D28 D20 Q19 VSS VSS VSS VSS VSS Q16 D15 D7 E Q29 D29 Q20 VDDQ VSS VSS VSS VDDQ Q...

Страница 4: ...d operations or K and K when in single clock mode When the Read port is deselected Q x 0 are automatically three stated CY7C1303BV25 Q 17 0 CY7C1306BV25 Q 35 0 RPS Input Synchronous Read Port Select active LOW Sampled on the rising edge of positive input clock K When active a Read operation is initiated Deasserting will cause the Read port to be deselected When deselected the pending access is all...

Страница 5: ...e positive output clock C This will allow for a seamless transition between devices without the insertion of wait states in a depth expanded memory Write Operations Write operations are initiated by asserting WPS active at the rising edge of the positive input clock K On the same K clock rise the data presented to D 17 0 is latched and stored into the lower 18 bit Write Data register provided BWS ...

Страница 6: ...e SRAM and VSS to allow the SRAM to adjust its output driver impedance The value of RQ must be 5X the value of the intended line impedance driven by the SRAM The allowable range of RQ to guarantee impedance matching with a tolerance of 15 is between 175Ω and 350Ω with VDDQ 1 5V The output impedance is adjusted every 1024 cycles to account for drifts in supply voltage and temperature Application Ex...

Страница 7: ...ower byte D 8 0 is written into the device D 35 9 will remain unaltered L H H H L H During the Data portion of a Write sequence only the lower byte D 8 0 is written into the device D 35 9 will remain unaltered H L H H L H During the Data portion of a Write sequence only the byte D 17 9 is written into the device D 8 0 and D 35 18 will remain unaltered H L H H L H During the Data portion of a Write...

Страница 8: ...etween the TDI and TDO pins as shown in TAP Controller Block Diagram Upon power up the instruction register is loaded with the IDCODE instruction It is also loaded with the IDCODE instruction if the controller is placed in a reset state as described in the previous section When the TAP controller is in the Capture IR state the two least significant bits are loaded with a binary 01 pattern to allow...

Страница 9: ...he TDI and TDO pins PRELOAD allows an initial data pattern to be placed at the latched parallel outputs of the boundary scan register cells prior to the selection of another boundary scan test operation The shifting of data for the SAMPLE and PRELOAD phases can occur concurrently when required that is while data captured is shifted out the preloaded data can be shifted in BYPASS When the BYPASS in...

Страница 10: ...to each state represents the value at TMS at the rising edge of TCK TEST LOGIC RESET TEST LOGIC IDLE SELECT DR SCAN CAPTURE DR SHIFT DR EXIT1 DR PAUSE DR EXIT2 DR UPDATE DR SELECT IR SCAN CAPTURE DR SHIFT IR EXIT1 IR PAUSE IR EXIT2 IR UPDATE IR 1 0 1 1 0 1 0 1 0 0 0 1 1 1 0 1 0 1 0 0 0 1 0 1 1 0 1 0 0 1 1 0 Feedback ...

Страница 11: ...Hz tTH TCK Clock HIGH 20 ns tTL TCK Clock LOW 20 ns Set up Times tTMSS TMS Set up to TCK Clock Rise 10 ns tTDIS TDI Set up to TCK clock Rise 10 ns tCS Capture Set up to TCK Rise 10 ns Hold Times tTMSH TMS Hold after TCK Clock Rise 10 ns tTDIH TDI Hold after Clock Rise 10 ns tCH Capture Hold after Clock Rise 10 ns Notes 10 These characteristic pertain to the TAP inputs TMS TCK TDI and TDO Parallel ...

Страница 12: ...ck Test Mode Select TCK TMS Test Data In TDI Test Data Out TDO tTCYC tTMSH tTL tTH tTMSS tTDIS tTDIH tTDOX tTDOV 50Ω 2 5V 0V ALL INPUT PULSES 1 25V Identification Register Definitions Instruction Field Value Description CY7C1303BV25 CY7C1306BV25 Revision Number 31 29 000 000 Version number Cypress Device ID 28 12 01011010010010101 01011010010100101 Defines the type of SRAM Cypress JEDEC ID 11 1 00...

Страница 13: ...Z 010 Captures the Input Output contents Places the boundary scan register between TDI and TDO Forces all SRAM output drivers to a High Z state RESERVED 011 Do Not Use This instruction is reserved for future use SAMPLE PRELOAD 100 Captures the Input Output ring contents Places the boundary scan register between TDI and TDO Does not affect the SRAM operation RESERVED 101 Do Not Use This instruction...

Страница 14: ... 11E 61 4B 88 1K 8 9R 35 10E 62 3A 89 2L 9 11P 36 10D 63 1H 90 3L 10 10P 37 9E 64 1A 91 1M 11 10N 38 10C 65 2B 92 1L 12 9P 39 11D 66 3B 93 3N 13 10M 40 9C 67 1C 94 3M 14 11N 41 9D 68 1B 95 1N 15 9M 42 11B 69 3D 96 2M 16 9N 43 11C 70 3C 97 3P 17 11L 44 9B 71 1D 98 2N 18 11M 45 10B 72 2C 99 2P 19 9L 46 11A 73 3E 100 1P 20 10L 47 Internal 74 2D 101 3R 21 11K 48 9A 75 2E 102 4R 22 10K 49 8B 76 1E 103 ...

Страница 15: ... 0 75V 0 68 0 75 0 95 V IX Input Leakage Current GND VI VDDQ 5 5 µA IOZ Output Leakage Current GND VI VDDQ Output Disabled 5 5 µA IDD VDD Operating Supply VDD Max IOUT 0 mA f fMAX 1 tCYC 500 mA ISB1 Automatic Power Down Current Max VDD Both Ports Deselected VIN VIH or VIN VIL f fMAX 1 tCYC Inputs Static 240 mA AC Input Requirements Over the Operating Range Parameter Description Test Conditions Min...

Страница 16: ...fter Clock K and K Rise 0 7 ns tHC tHC Control Signals Hold after Clock K and K Rise RPS WPS BWS0 BWS1 0 7 ns tHD tHD D x 0 Hold after Clock K and K Rise 0 7 ns Output Times tCO tCHQV C C Clock Rise or K K in single clock mode to Data Valid 2 5 ns tDOH tCHQX Data Output Hold after Output C C Clock Rise Active to Active 1 2 ns tCHZ tCHZ Clock C and C rise to High Z Active to High Z 23 24 2 5 ns tCL...

Страница 17: ...wing A0 i e A0 1 26 Outputs are disabled High Z one clock cycle after a NOP 27 In this example if address A2 A1 then data Q2 0 D10 and Q21 D11 Write data is forwarded immediately as read results This note applies to the whole diagram READ READ WRITE WRITE WRITE NOP READ WRITE NOP K 1 2 3 4 5 8 10 6 7 K RPS WPS A Q D C C A1 A0 D10 tKH tKHKH tKHCH tCO tKL tCYC tHC tSA tHA tHD tKHCH DON T CARE UNDEFI...

Страница 18: ...d MHz Ordering Code Package Diagram Package Type Operating Range 167 CY7C1303BV25 167BZC 51 85180 165 ball Fine Pitch Ball Grid Array 13 x 15 x 1 4 mm Commercial CY7C1306BV25 167BZC CY7C1303BV25 167BZXC 165 ball Fine Pitch Ball Grid Array 13 x 15 x 1 4 mm Lead free CY7C1306BV25 167BZXC CY7C1303BV25 167BZI 165 ball Fine Pitch Ball Grid Array 13 x 15 x 1 4 mm Industrial CY7C1306BV25 167BZI CY7C1303B...

Страница 19: ...scription Table Changed tTCYC from 100 ns to 50 ns changed tTF from 10 MHz to 20 MHz and changed tTH and tTL from 40 ns to 20 ns in TAP AC Switching Characteristics table Modified the ZQ pin definition as follows Alternately this pin can be connected directly to VDDQ which enables the minimum impedance mode Included Maximum Ratings for Supply Voltage on VDDQ Relative to GND Changed the Maximum Rat...

Отзывы: