background image

CY14B101K

Document Number: 001-06401 Rev. *I

Page 8 of 28

Calibrating the Clock

The RTC is driven by a quartz controlled oscillator with a nominal
frequency of 32.768 kHz. Clock accuracy depends on the quality
of the crystal and calibration. The crystal oscillators typically
have an error of +20ppm to +35ppm. However, CY14B101K
employs a calibration circuit that improves the accuracy to +1/–2
ppm at 25°C. This implies an error of +2.5 seconds to -5 seconds
per month.

The

 

calibration circuit adds or subtracts counts from the oscillator

divider circuit to achieve this accuracy. The number of pulses that
are suppressed (subtracted, negative calibration) or split (added,
positive calibration) depends upon the value loaded into the five
calibration bits found in Calibration register at 0x1FFF8. The
calibration bits occupy the five lower order bits in the Calibration
register. These bits are set to represent any value between ‘0’
and 31 in binary form. Bit D5 is a sign bit, where a ‘1’ indicates
positive calibration and a ‘0’ indicates negative calibration.
Adding counts speeds the clock up and subtracting counts slows
the clock down. If a binary ‘1’ is loaded into the register, it corre-
sponds to an adjustment of 4.068 or –2.034 ppm offset in oscil-
lator error, depending on the sign.

Calibration occurs within a 64 minute cycle. The first 62 minutes
in the cycle may, once per minute, have one second shortened
by 128 or lengthened by 256 oscillator cycles. If a binary ‘1’ is
loaded into the register, only the first two minutes of the 64
minute cycle is modified. If a binary 6 is loaded, the first 12 are
affected, and so on. Therefore, each calibration step has the
effect of adding 512 or subtracting 256 oscillator cycles for every
125,829,120 actual oscillator cycles, that is, 4.068 or –2.034 ppm
of adjustment per calibration step in the Calibration register.

To determine the required calibration, the CAL bit in the Flags
register (0x1FFF0) must be set to ‘1’. This causes the INT pin to
toggle at a nominal frequency of 512 Hz. Any deviation
measured from the 512 Hz indicates the degree and direction of
the required correction. For example, a reading of 512.01024 Hz
indicates a +20 ppm error. Hence, a decimal value of –10
(001010b) must be loaded into the Calibration register to offset
this error. 

Note

 Setting or changing the Calibration register does not affect

the test output frequency.

To set or clear CAL, set the write bit “W” (in the flags register at
0x1FFF0) to “1” to enable writes to the Flag register. Write a
value to CAL, and then reset the write bit to “0” to disable writes.

Alarm

The alarm function compares user programmed values of alarm
time and date (stored in the registers 0x1FFF1-5) with the corre-
sponding time of day and date values. When a match occurs, the
alarm internal flag (AF) is set and an interrupt is generated on
INT pin if Alarm Interrupt Enable (AIE) bit is set. 

There are four alarm match fields - date, hours, minutes, and
seconds. Each of these fields has a match bit that is used to
determine if the field is used in the alarm match logic. Setting the
match bit to ‘0’ indicates that the corresponding field is used in

the match process. Depending on the match bits, the alarm
occurs as specifically as once a month or as frequently as once
every minute. Selecting none of the match bits (all 1s) indicates
that no match is required and therefore, alarm is disabled.
Selecting all match bits (all 0s) causes an exact time and date
match. 

There are two ways to detect an alarm event: by reading the AF
flag or monitoring the INT pin. The AF flag in the flags register at
0x1FFF0 indicates that a date or time match has occurred. The
AF bit is set to “1” when a match occurs. Reading the flags or
control register clears the alarm flag bit (and all others). A
hardware interrupt pin may also be used to detect an alarm
event. 

Note 

CY14B101K requires the alarm match bit for seconds

(0x1FFF2 - D7) to be set to ‘0’ for proper operation of Alarm Flag
and Interrupt.

Alarm registers are not nonvolatile and, therefore, need to be
reinitialized by software on power up. To set, clear or enable an
alarm, set the ‘W’ bit (in Flags Register - 0x1FFF0) to ‘1’ to
enable writes to Alarm Registers. After writing the alarm value,
clear the ‘W’ bit back to “0” for the changes to take effect.

Watchdog Timer

The Watchdog Timer is a free running down counter that uses
the 32 Hz clock (31.25 ms) derived from the crystal oscillator.
The oscillator must be running for the watchdog to function. It
begins counting down from the value loaded in the Watchdog
Timer register. 

The timer consists of a loadable register and a free running
counter. On power up, the watchdog time out value in register
0x1FFF7 is loaded into the Counter Load register. Counting
begins on power up and restarts from the loadable value any time
the Watchdog Strobe (WDS) bit is set to ‘1’. The counter is
compared to the terminal value of ‘0’. If the counter reaches this
value, it causes an internal flag and an optional interrupt output.
You can prevent the time out interrupt by setting WDS bit to ‘1’
prior to the counter reaching ‘0’. This causes the counter to
reload with the watchdog time out value and to be restarted. As
long as the user sets the WDS bit prior to the counter reaching
the terminal value, the interrupt and WDT flag never occur. 

New time out values are written by setting the watchdog write bit
to ‘0’. When the WDW is ‘0’, new writes to the watchdog time out
value bits D5-D0 are enabled to modify the time out value. When
WDW is ‘1’, writes to bits D5-D0 are ignored. The WDW function
enables a user to set the WDS bit without concern that the
watchdog timer value is modified. A logical diagram of the
watchdog timer is shown in 

Figure 4

. Note that setting the

watchdog time out value to ‘0’ disables the watchdog function.

The output of the watchdog timer is the flag bit WDF that is set if
the watchdog is allowed to time out. The flag is set upon a
watchdog time out and cleared when the user reads the Flags or
Control registers. If the watchdog time out occurs, the user also
enables an optional interrupt source to drive the INT pin.

[+] Feedback 

Содержание CY14B101K

Страница 1: ...package ROHS compliant Functional Description The Cypress CY14B101K combines a 1 Mbit nonvolatile static RAM with a full featured real time clock in a monolithic integrated circuit The embedded nonvo...

Страница 2: ...nconnected if VRTCbat is used VRTCbat Power Supply Battery Supplied Backup RTC Supply Voltage Left unconnected if VRTCcap is used INT Output Interrupt Output Program to respond to the clock alarm the...

Страница 3: ...W AutoStore Operation The CY14B101K stores data to nvSRAM using one of three storage operations 1 Hardware Store activated by HSB 2 Software Store activated by an address sequence 3 AutoStore on devic...

Страница 4: ...D 4 Read Address 0x7C1F Valid READ 5 Read Address 0x703F Valid READ 6 Read Address 0x8FC0 Initiate STORE cycle The software sequence is clocked with CE controlled READs or OE controlled READs After th...

Страница 5: ...ality assurance Incoming inspection routines at customer or contract manufacturer s sites sometimes reprograms these values Final NV patterns are typically repeating patterns of AA 55 00 FF A5 or 5A T...

Страница 6: ...t Data Output Data Output High Z Active ICC2 1 2 3 L H L 0x4E38 0xB1C7 0x83E0 0x7C1F 0x703F 0x4C63 Read SRAM Read SRAM Read SRAM Read SRAM Read SRAM Nonvolatile RECALL Output Data Output Data Output D...

Страница 7: ...low VSWITCH the device switches to the backup power supply The clock oscillator uses very little current to maximize the backup time available from the backup source Regardless of clock operation with...

Страница 8: ...h of these fields has a match bit that is used to determine if the field is used in the alarm match logic Setting the match bit to 0 indicates that the corresponding field is used in the match process...

Страница 9: ...to a host microcontroller The control bits are summarized in the following section Interrupt Register Watchdog Interrupt Enable WIE When set to 1 the watchdog timer drives the INT pin and an internal...

Страница 10: ...el H L High Low Enable Watchdog Timer Power Monitor Clock Alarm VINT WDF WIE PF PFE AF AIE P L Pin Driver H L INT VCC VSS C 1 C 2 RF Y 1 X1 X2 A0 A1 A2 A3 DQ0 Recommended Values Y1 32 768KHz RF 10M Oh...

Страница 11: ...N 0 0 Cal Sign 0 Calibration 00000 Calibration Values 7 0x1FFF7 WDS 0 WDW 0 WDT 000000 Watchdog 7 0x1FFF6 WIE 0 AIE 0 PFE 0 0 H L 1 P L 0 0 0 Interrupts 7 0x1FFF5 M 1 0 10s Alarm Date Alarm Day Alarm...

Страница 12: ...r 0x1FFFC Time Keeping Day D7 D6 D5 D4 D3 D2 D1 D0 0 0 0 0 0 Day of Week Lower nibble three bits contains a value that correlates to day of the week Day of the week is a ring counter that counts from...

Страница 13: ...31 25 ms The range of timeout value is 31 25 ms a setting of 1 to 2 seconds setting of 3 Fh Setting the watchdog timer register to 0 disables the timer These bits can be written only if the WDW bit w...

Страница 14: ...being reset by the user It is cleared to 0 when the Flags register is read or on power up AF Alarm Flag This read only bit is set to 1 when the time and date match the values stored in the alarm regi...

Страница 15: ...btained without output loads IOUT 0 mA Commercial 65 55 50 mA mA Industrial 70 60 55 mA mA ICC2 Average VCC Current during STORE All Inputs Do Not Care VCC Max Average current for duration tSTORE 6 mA...

Страница 16: ...al Resistance These parameters are guaranteed but not tested Parameter Description Test Conditions 48 SSOP Unit JA Thermal Resistance junction to ambient Test conditions follow standard test methods a...

Страница 17: ...to Output Inactive 10 13 15 ns tLZOE 13 tGLQX Output Enable to Output Active 0 0 0 ns tHZOE 13 tGHQZ Output Disable to Output Inactive 10 13 15 ns tPU 14 tELICCH Chip Enable to Power Active 0 0 0 ns...

Страница 18: ...Write 20 25 30 ns tSA tAVWL tAVEL Address Setup to Start of Write 0 0 0 ns tHA tWHAX tEHAX Address Hold After End of Write 0 0 0 ns tHZWE 13 16 tWLQZ Write Enable to Output Disable 10 13 15 ns tLZWE 1...

Страница 19: ...65 V tVCCRISE VCC Rise Time 150 s Figure 12 AutoStore Power Up RECALL VCC VSWITCH tSTORE tSTORE tHRECALL tHRECALL AutoStore POWER UP RECALL Read Write Inhibited STORE occurs only if a SRAM write has...

Страница 20: ...s Figure 13 CE Controlled Software STORE RECALL Cycle 22 Figure 14 OE Controlled Software STORE RECALL Cycle 22 tRC tRC tSA tSCE tHA tSTORE tRECALL DATA VALID DATA VALID 6 S S E R D D A 1 S S E R D D...

Страница 21: ...e 70 s Figure 16 Soft Sequence Processing 22 24 W W6725 W W 7 9 7 9 03 1 03 1 6 1 4 7 287 6 287 W3 6 GGUHVV GGUHVV GGUHVV GGUHVV 6RIW 6HTXHQFH RPPDQG W66 W66 GGUHVV 9 W6 W 6RIW 6HTXHQFH RPPDQG W Notes...

Страница 22: ...ime to Start At Min Temperature from Power up or Enable 10 sec At 25 C Temperature from Power up or Enable 5 sec Truth Table For SRAM Operations HSB should remain HIGH for SRAM Operations CE WE OE Inp...

Страница 23: ...n T Tape and Reel Blank Std Speed 25 25 ns Data Bus K x8 RTC Density 101 1 Mb Voltage B 3 0V Cypress NVSRAM 14 AutoStore Software Store Hardware Store Package SP 48 SSOP 35 35 ns Temperature C Commerc...

Страница 24: ...ckage Type Operating Range 25 CY14B101K SP25XC 51 85061 48 pin SSOP Commercial CY14B101K SP25XCT CY14B101K SP25XI 51 85061 48 pin SSOP Industrial CY14B101K SP25XIT 35 CY14B101K SP35XC 51 85061 48 pin...

Страница 25: ...CY14B101K Document Number 001 06401 Rev I Page 25 of 28 Package Diagrams Figure 17 48 Pin Shrunk Small Outline Package 51 85061 51 85061 C Feedback...

Страница 26: ...ure spec to Data Retention 20 years at 55 C Removed Icc1 values from the DC table for 25 ns and 35 ns Industrial Grade Changed Icc2 value from 3 mA to 6 mA in the DC Table Added a footnote on VIH Adde...

Страница 27: ...n Register Map Detail table Added Industrial specs for 25ns and 35ns speed Changed VIH from Vcc 0 3 to Vcc 0 5 Added Data Retention and Endurance table on page 15 Added Thermal resistance values Added...

Страница 28: ...firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement Any reproduction modification translation compilation...

Отзывы: