background image

I N S T R U C T IO N

MANUAL

TYPE

 

109

PULSE  GENERATOR

-------------------------------------------

S ’A ' -

  , f ' / 7 ----------

Tektronix,  Inc.

S.W .  M illikan  W a y  

•  

P.  O .  Box  500 

•  

Beaverton,  O rego n 

•  

Phone  Ml  4-0161 

•  

C ab le s:  Tektronix

Tektronix  International A .G .

Terrassenw eg  1A 

•  

Z u g ,  Sw itzerland 

•  

P H .0 4 2 -4 9 1 9 2  

•  

C a b le :  Tekintag,  Zu g  Sw itzerland 

•  

Telex  53.57 4

0 7 0 -2 9 9

563

Summary of Contents for TYPE 109

Page 1: ...ERATOR S A f 7 Tektronix Inc S W M illikan W ay P O Box 500 Beaverton Oregon Phone Ml 4 0161 Cables Tektronix Tektronix International A G Terrassenweg 1A Zug Switzerland PH 042 49192 Cable Tekintag Zug Switzerland Telex 53 574 070 299 563 ...

Page 2: ...ectly to the field there fore all requests for repairs and replace ment parts should be directed to the Tek tronix Field Office or Representative in your area This procedure will assure you the fastest possible service Please include the instrument Type and Serial number with all requests for parts or service Specifications and price change priv ileges reserved Copyright jjP 11963 by Tektronix Inc...

Page 3: ...TENTS Section 1 W arranty Characteristics Section 2 Operating Instructions Section 3 Applications Section 4 Circuit Description Section 5 Maintenance Section 6 Calibration Section 7 Parts List and Diagram ...

Page 4: ...PULSE POLARITY T H WER flU R N OFF IO EXTEND MERCURY SWITCH UFE PULSE GENERATOR RISETIME 0 25 NANOSEC EXT POWER OR MONITOR AMPLITUDE 25 50 n 5G V CHG UNS 1 0 5 EXT PWR Type 109 ...

Page 5: ...risetime is illustrated in Figs 1 1 and 1 2 Fig 1 2 W aveform showing the Type 109 pulse displayed on a Tektronix Type 661 Sam p lin g Oscilloscope Combined risetime of the system between 1 0 and 9 0 am plitude levels is less than 0 4 nanoseconds RISETIM E LESS THAN 0 2 5 nsec 1 nsec Fig 1 1 A double exposure photograph of the output pulse from the Type 109 no external charge lin e and a 1 g igacy...

Page 6: ...lent Sweep Rate 5 zsec cm Sampling Oscilloscope Type 661 Fig 1 6 Sam e conditions as Figs 1 4 and 1 5 except that the equivalent sweep rate is 1 nsec cm Fig 1 4 W aveform produced by using the extern al charge net w ork supplied as a standard accessory The network connects to one of the 50 12 CH G LIN E connectors on the Type 109 and grounds the unused connector Repetition Rate Infernally adjustab...

Page 7: ...voltages of the same p olarity Vertical Deflection Factor 9 5 v cm Sweep R ate 5 nsec cm Real Tim e O scilloscope Type 519 Fig 1 9 Double exposure photograph shows that sim ilar condi tions as those in Fig 1 8 w ere used except the external charge voltages are of opposite polarities Output Impedance 50 ohms Power Requirements Line Voltage 105 to 125 volts or 210 to 250 volts 50 to 800 cycles Power...

Page 8: ...NOTES ...

Page 9: ...cond The risetime of the pulses is less than 0 25 nanosecond the polarity can be selected and both the amplitude and dura tion are variable The Type 109 is intended for use with fast rise sampling equivalent time systems or conventional real time oscillo scopes The Type 109 is fully transistorized except for a VR tube and requires no warmup time before operating As soon as the POWER ON switch is t...

Page 10: ...per impedance match The output pulse must be applied through high quality 50 ohm cables or suitable impedance matching devices to keep losses down and maintain the waveform Use RG 8A U for signal connections If a signal delay cable is needed use the Type 113 Delay Cable The only excep tions are the cables used to supply external power to the EXT POWER OR MONITOR connectors to charge the lines The ...

Page 11: ...ines which are used to generate the output pulses are charged by the internal 100 volt power supply of the Type 109 In these applica tions the pulse amplitude is controlled by the VOLTAGE RANGE and AMPLITUDE controls The VOLTAGE RANGE control determines the range of adjustment of the AMPLI TUDE control The scale of the AMPLITUDE control when used with the setting of the VOLTAGE RANGE control indic...

Page 12: ...NOTES ...

Page 13: ...ltage changes from 90 to 10 of the falling portion of the waveform Pulse Width or Duration tw the time duration of the pulse measured between the 50 amplitude levels of the rising and falling portions of the waveform Time Delay td the time interval between the beginning of the input pulse t 0 and the time when the rising portion of the output pulse attains an arbitrary amplitude of 10 above the ba...

Page 14: ...erator 50fi OUTPUT connector 2 If the pulse is applied to a 50Cl load which has a dc potential across it the actual amplitude of the pulse is the voltage set by the AMPLITUDE control less one half the dc voltage across the load Do not allow more than 200 volts dc to be applied to the Type 109 Pulse Generator 500 OUTPUT connector This limit will keep the internal com ponents of the Type 109 from be...

Page 15: ...n of the waveform due to the 125 ohm section is about 60 as high as the first portion of the waveform due to the 50 ohm cable The duration of the Type 109 waveform due to the 125 ohm cable is twice the delay time of the cable so it is evident from the picture that the true delay time of the 125 ohm cable used is actually 5 nsec In Fig 3 4 the relative amplitude of the portions of the waveform bear...

Page 16: ...pen or shorted to coax shield Cable or Component under test 50 S3cable Used as a reference impedance 66 7 Q W v lOOfi 1 Vi w Dividing Pad To 50 Input of Oscilloscope All Resistors 1 Vi watt Fig 3 5 Three w ay dividing pad test circuit for m easuring im pedance by reflection As an alternate method you can construct a dividing pad such as the one shown in Fig 3 5 This pad overcomes a disadvantage of...

Page 17: ... results that can be expected When the setup is working properly the device under test can then be inserted into the signal line and the output from the test device observed The following factors pertaining to the vertical deflection plate system will be considered dc operating potential of the plates lead inductance deflection plate capacitance transit time limitations delay lines and deflection ...

Page 18: ...g the equation in Fig 3 8 Make R2 the same value as R l Since the deflection plates are placed close to the path of the electron beam a small amount of current will flow in the deflection plate circuits This current flow varies nonlinearly with the beam position The values of the re sistors R3 and R4 must be selected to keep the current flow from producing a large voltage drop at the deflection pl...

Page 19: ...he pulse rise and fall times are limited by the bandwidth of the vertical amplifier Fig 3 10 shows the setup which was used to apply the Type 109 pulse to the vertical deflection plates through a Deflection Plate Connector Part No 013 017 The result ant waveform is shown in the same illustration The deflec tion plate connector circuit that was used is similar to the one shown in Fig 3 11 except C3...

Page 20: ...f R G 8 A U cable as a signal d elay line causes rolloff and a g rad ual upward slope of the w aveform Fig 3 1 1 Circuit diagram of actual circuit used to obtain the w aveform shown in Fig 3 12 Com ponents C3 and R5 aid in sharpening the leading corner and flattening the top of the w aveform to offset the slight deterioration caused by using a long sig nal d elay line 3 8 ...

Page 21: ...LE CABLE EXT TRIG O O O O INPUT o 6 7 V C M DEFLECTION PLATE CO N N ECTO R Device under test can be inserted at either point 2 0 N SEC CM Fig 3 12 Note the improved w aveform response obtained by using two Type 113 D elay Cables as a signal d elay line and by adding C3 and R5 to the deflection plate connector network 3 9 ...

Page 22: ...NOTES ...

Page 23: ... are con nected in parallel for 117 volt operation and in series for 234 volt operation A filter network consisting of T600 C600 and C601 is used to reduce power line transients Thermal cutout TK601 protects the Type 109 against excessively high interior temperature If the temperature inside the instrument be comes too high the contacts of TK601 will open and turn off the power applied to the prim...

Page 24: ...rive voltage on the transformer primary Since the number of turns of T750 are fixed the multi vibrator frequency can be changed by varying the drive voltage To accomplish this FREQUENCY control R614 when adjusted changes the operating voltage on transistors Q725 and Q735 By changing the transistor operating volt ages core saturation time changes thus changing the multi vibrator frequency By adjust...

Page 25: ...RGE LINE 2 WAVEFORM MONI TORED AT THE CHG LINE 2 CONNECTOR ALTERNATE PULSE WAVEFORMS AT THE 50 ß OUTPUT CONNECTOR Fig 4 3 Charge and discharge sequence using two separate different length charge lines For this illustration CH ARGE LIN E 2 is twice as long as CHARGE LINE 1 the Type 109 output am plitude is f 50 volts and the nom inal repetition rate of the pulses generated from each contact is 3 2 ...

Page 26: ...e to capacitive coupling of backwave coupling of backwave Reed closes Contact Reed closes Contact Reed closes Contact with left opens with right opens with left opens contact contact contact Fig 4 4 Charge and discharge sequence using the same charge line Type 109 output am plitude is 5 0 volts and the nom inal repetition rate is 6 4 0 cps 4 4 ...

Page 27: ...s originally charged to 100 volts then a 50 volt output pulse is obtained A 50 volt pulse also travels down the charge line toward the open end called the back wave As the pulse reaches the open end it is reflected in phase and returns toward the mercury switch As the reflected pulse reaches the mercury switch the charge in the cable drops to essentially zero and the output pulse ends The duration...

Page 28: ...NOTES ...

Page 29: ...loose or broken connections damaged con nectors improperly seated VR tube or transistor scorched wires or resistors or broken ceramic terminal strips For most visual troubles the remedy is apparent however particular care must be taken when heat damaged com ponents are detected Overheating of parts is often the result of other less apparent defects in the circuit It is essential that you determine...

Page 30: ... the solder in the slot and reduces the amount of heat required It is important to use as little heat as is possible and not to twist the soldering iron Twisting or turning the soldering iron in the slot can chip or break the ceramic strip Ceramic Terminal Strips To remove a ceramic terminal strip unsolder all com ponents and connections then pry the strip with yokes attached out of the chassis As...

Page 31: ...hen make the checks that are listed in the second column until you find the exact cause of the trouble Table 5 1 does not list every possible symptom or check but it does have a few references which direct you to Tables 5 2 and 5 3 These last two tables are arranged so that they can be used individually to perform quick checks on the operation of specific circuits Table 5 3 is a guide for troubles...

Page 32: ...Maintenance Type 109 70 T D 3 Q Q Q IQ H t Q 3 g n Q_ S Q C D o_ Q Q C D Q 3 Q U o_ D Q 3 o c a D w 5 4 SYMPTOMS ...

Page 33: ...TABLE 5 2 continued Maintenance Type 109 co i n ca a Q D to U4 o CL 0 1 uo o 5 5 W h e n c o n n e c t e d t o 6 0 c p s m a i n ...

Page 34: ...NOTES ...

Page 35: ...a Tektronix Type 540 Series Oscilloscope with a Type L Plug In Unit a Type P6000 10X Attenuator Probe and a Type P6027 IX Attenuator Probe Sustitute specifications Bandpass 30 me with the 10X probe deflection factor at least 50 mv per cm and at least 5 mv per cm at reduced band pass 2 Sampling test oscilloscope such as a Tektronix Type 561 Oscilloscope with a Type 3S76 and a Type 3T77 Plug In Unit...

Page 36: ...upply Test Points Ohmmeter Range Approx Resistance Readings PULSE POLARITY Switch Setting 100V XI k 7k 18k 100V Xlk 7k 18k 17V R10 18Q 30Q or Fig 6 3 shows the physical locations of these test points Reverse the ohmmeter leads to obtain both readings CALIBRATION PROCEDURE Introduction The equipment used in this calibration procedure is the same as that specifically called out in the Equipment Requ...

Page 37: ...r 234 volts e Disconnect the VOM and the IX probe 3 Check Frequency Range and Amplitude a Set the front panel controls on the conventional test oscilloscope to the following settings Input coupling DC Volts Cm 1 Volt Variable Volts Cm Calibrated Stability Preset Triggering Mode AC Triggering Slope Time Cm 1 Millisec Variable Time Cm Calibrated Horizontal Display Normal X I b Disconnect the 1 X pro...

Page 38: ... slight horizontal jitter due to mechan ical closure of the reed and a spike on the leading corners of the waveform due to the tester s lead lengths g Vary the autotransformer between 105 and 125 or 210 and 250 volts and check the waveform for the following characteristics 1 Check for a clean steady waveform display similar to the one shown in Fig 6 6a The closure inter val for one set of contacts...

Page 39: ...ange i Disconnect the mercury switch tester leads and the 10 X probe from the Type 109 j Check that the autotransformer is set for an output of 117 or 234 volts 5 Check Output Amplitude a Set the Type 109 AMPLITUDE control to 50 and the VOLTAGE RANGE switch to 50 set the PULSE POLAR ITY switch to b Connect a 50 ohm 20 nsec cable to the 50 Q CHG LINE 1 and 50 Q CHG LINE 2 connectors c Connect a 8 5...

Page 40: ... Trigger pint Set the Type 109 controls to these settings AMPLITUDE 10 VOLTAGE RANGE 5 PULSE POLARITY Fig 6 9 M easuring the risetim e Equivalent sweep rate is 0 2 nsec cm c Connect a 5 nsec cable between the 50 Q OUTPUT connector on the Type 109 and Input A on the sam pling oscilloscope d Advance the oscilloscope Trigger Sensitivity control until a sweep trace appears on the screen Use the A Posi...

Page 41: ...K counter sunk P pico or ICH1 2 dia diameter PHS pan head steel div division piv peak inverse voltage EMC electrolytic metal cased piste plastic EMT electroyltic metal tubular PMC paper metal cased ext external poly polystyrene f farad Prec precision F 1 focus and intensity PT paper tubular FHS flat head steel PTM paper or plastic tubular molded Fil HS fillister head steel RHS round head steel g o...

Page 42: ...f 1 3 132 002 Subpart of Mercury Switch Assembly see Page ref 1 4 334 679 1 TAG metal serial no insert 5 210 473 1 NUT switch 12 sided 210 902 1 WASHER 470 ID x 21 32 OD 354 055 1 RING locking switch 23 32 OD x 15 32 ID 6 366 145 1 KNOB voltage range 210 413 1 NUT hex 3 8 32 x 1 2 210 840 1 WASHER 390 ID x 9 16 OD 210 013 1 L0CKWASHER int 3 8 x 11 16 7 366 145 1 KNOB Amplitude 210 413 1 NUT hex 3 ...

Page 43: ...2 1 CONNECTOR chassis mt coaxial female Consisting Of 129 041 1 POST ground 4 40 thread one end 200 185 1 COVER 3 wire motor base 210 003 2 LOCKWASHER ext 4 210 551 2 NUT hex 4 40 x 1 4 211 015 1 SCREW 4 40 x 1 2 RHS 214 078 2 PIN connecting motor base 377 041 1 INSERT black urea 386 933 1 PLATE motor base mounting Mounting Hardware not included 211 552 2 SCREW 6 32 x 2 BHS 210 457 2 NUT keps 6 32...

Page 44: ...Parts List Type 109 RIGHT SIDE 7 4 ...

Page 45: ...et nylon Mounting Hardware 211 019 2 SCREW 4 40 x 1 RHS 210 949 2 WASHER 9 64 ID x 1 2 0D 119 006 1 MAGNET pocket 211 512 1 SCREW 6 32 x 1 2 FHS 343 075 1 CLAMP switch toroid Mounting Hardware 211 564 2 SCREW 6 32 x 3 8 hex socket head cap Mounting Hardware for Switch not included 210 457 4 NUT keps 6 32 x 5 16 2 344 014 1 CLIP spring tube 3 210 413 2 NUT hex 3 8 32 x 1 2 210 840 2 WASHER 390 ID x...

Page 46: ...Parts List Type 109 LEFT SIDE 7 6 ...

Page 47: ...1 579 4 POST terminal transistor mounting 210 006 4 LOCKWASHER int 6 210 407 4 NUT hex 6 32 x 1 4 386 978 101 529 2 PLATE mica transistor insulating 387 345 530 2 PLATE insulator anodized alum 210 900 4 WASHER bakelite transistor mounting not shown 210 804 101 579 4 WASHER 8S x 3 8 not shown 210 008 101 579 4 LOCKWASHER int 8 not shown 210 409 101 579 4 NUT hex 8 32 x 5 16 not shown 210 202 580 4 ...

Page 48: ...Parts List Type 109 CABINET 7 8 ...

Page 49: ...PA RT N O SERIA L N O EFF D ISC 1 017 060 017 067 101 210 209 CHARGING NETWORK CHARGING NETWORK D ESC RIPTIO N 2 017 502 3 50 O 5 NSEC CABLE RG 8 AU 3 103 013 4 161 010 1 ADAPTER power cord 3 wire to 2 wire 1 CORD power 16 ga 8 ft 3 wire 7 9 ...

Page 50: ...1 3 ...

Page 51: ... C661 A B 290 040 2 x 40 if EMC 250 v C679 283 008 1 if Disc Type 500 v C696 283 000 001 if Disc Type 500 v C750 Use 283 057 1 if Disc Type 200 v Diodes D602A B 152 035 2 1N563A Silicon D612 152 064 i o v y4 w 10 Zener D662A B C D 152 047 4 1N2862 or equal Silicon Fuses F601 159 025 5 Amp 3AG Fast Bio 117 v operation 50 60 cycle 159 028 25 Amp 3AG Fast Bio 234 v operation 50 60 cycle Resistors Res...

Page 52: ...6 473 47 k 2 w R752 302 473 47 k y2 w R753 302 472 4 7 k y2 w R756 302 473 47 k Vi w R757 306 473 47 k 2 w R758 302 472 4 7 k V i w Switches SW601 Unwired 260 199 Wired Toggle SPST POWER ON SW679 260 212 Slide PULSE POLARITY SW690 260 410 262 419 Rotary VOLTAGE RANGE SW750 TK601 260 334 260 413 Mercury Switch Checked Thermo cut out 175 F Transformers T600 120 164 Toroid 3T TD12 T601 120 239 L V Po...

Page 53: ...uit and component improvements to our instruments as soon as they are developed and tested Sometimes due to printing and shipping require ments we can t get these changes immediately into printed manuals Hence your manual may contain new change information on following pages If it does not your manual is correct as printed ...

Page 54: ... 3 0 3 3 3 3 3 3 3 3 3 3 3 ...

Page 55: ...TYPE 109 PARTS LIST CORRECTION CHANGE TO SW750 260 0282 02 Mercury Switch Checked M9UL1 L65 ...

Page 56: ...f 1 Li _r S s s n s i i j n s n j i ...

Reviews: