background image

© 2022

www.teamWavelength.com

15

WHY56ND TEMPERATURE CONTROLLER

STEP 2 

CONFIGURE THE HEAT AND COOL 

CURRENT LIMITS

Adjust the current limits using the LIMA and LIMB trimpots 

on the WHY56ND‑EV. The evaluation board’s LIMA and 

LIMB  trimpots  independently  adjust  the  heat  and  cool 

current limits from zero to a full 2.0 A. Clockwise turns will 

increase the limit, and counter‑clockwise turns will decrease 

the current limit value. Use 

Table 7

 to adjust the heat and 

cool current limits. 

Do not exceed SOA limits

.

Table 7.  

LIMA and LIMB Current Limit Trimpot Configuration

SENSOR 

TYPE

LOAD TYPE

LIMA 

TRIMPOT

LIMB 

TRIMPOT

Thermistor

Thermoelectric

Cool Current 

Limit

Heat Current 

Limit

Thermistor

Resistive 

Heater

Turn Fully 

CCW

Heat Current 

Limit

STEP 3 

CONNECT THE THERMAL LOAD

Connect  the  WHY56ND‑EV  outputs  (OUTPUT  A  or 

OUTPUT B) to your thermoelectric or resistive heater using 

Table 8

 as a guide.

Table 8.  

Output Configuration

SENSOR 

TYPE

LOAD 

TYPE

OUTPUT A

OUTPUT B

Thermistor

Thermo‑

electric

Negative TEC 

Terminal

Positive TEC 

Terminal

Thermistor Resistive 

Heater

Quick Connection:

 Simply connect 

the resistive heater to OUTA and 

OUTB. Adjust the cooling current limit 

to zero by turning the LIMA trimpot 

fully counterclockwise.

Maximum Voltage Connection:

 

Connect one side of the resistive 

heater to OUTB and the other side to 

the voltage source V

S

.

RTD

Resistive 

Heater

Maximum Voltage Connection: 

Connect one side of the resistive 

heater to OUTA and the other side to 

the voltage source V

S

.

NOTE: Adjust the cooling current limit 

to zero by turning the LIMB trimpot 

fully counterclockwise.

STEP 4 

CONNECT YOUR TEMPERATURE 

SENSOR

Connect the temperature sensor to the  and Sensor‑ 

leads on the 4‑wire output cable. The default configuration 

of the WHY56ND‑EV allows for operation of the board with 

NTC thermistors in the range of 0 ‑ 20 kΩ.

NOTE:

  Contact  Wavelength  Electronics  to  use  the 

WHY56ND‑EV with other sensors or ranges.

STEP 5 

ATTACHING THE V

DD

 AND V

S

 

POWER SUPPLIES

Ensure that the controller can be safely operated by 

checking the SOA Calculator 

website

. The V

DD

 power 

supply is used to power the WHY56ND internal control 

electronics  and  must  be  capable  of  supplying  100  mA  of 

current. The V

S

 power supply is used to power the WHY56ND 

output H‑Bridge and must be capable of supplying a current 

greater than the LIMA and LIMB current limit settings. For 

simple operation tie V

DD

 to V

S

. A separate V

S

 power supply 

allows the H‑Bridge to operate at a voltage different from the 

4.5 V required by the V

DD

 supply. Select V

S

 approximately 

2.5 V above the maximum voltage drop across OUTA and 

OUTB  to  reduce  the  power  dissipation  in  the  WHY56ND 

component  and  minimize  your  heatsinking  requirements. 

Set  the  ENABLE  Switch  to  OFF  before  powering  the 

WHY56ND. Connect both power supplies via the PGND line 

in the input connector. For high impedance resistance loads, 

a higher voltage V

S

 power supply may be required.

!

The  COMMON  (COM)  terminal  on  the 

WHY56ND‑EV  is  not  intended  to  act  as  a 

power connection, but as a low noise ground 

reference for monitor signals.

Once power is connected to the Evaluation Board, all 

control electronics are powered, however there is no 

drive current available to other components until the 

WHY56ND Enable switch is ON.

STEP 6 

ADJUST THE LOOP 

COMPENSATION PROPORTIONAL GAIN AND 
INTEGRATOR TIME CONSTANT

Adjust the two trimpots named “P GAIN” and “I TERM” to 

change the proportional gain and integrator time constant 

for  the  control  loop  to  optimize  the  control  parameters  of 

your  system.  The  “I  TERM”  adjustment  affects  both  the 

proportional and integrator parameters while the proportional 

setting affects only the proportional gain. 

For a better explanation of how the I term and P term trimpots 

affect  the  parameters  of  the  control  system,  see 

STEP 4

 

on 

page 10

.  The  I  term  adjusts  R

G

 in the equations on 

page 10

, while the P term adjusts R

L

. C

L

 and R

L

 are both 

related to R

G

 in 

Equation 5

 and 

Equation 6

.

Summary of Contents for WHY56ND

Page 1: ...upply Low Cost 0 005 C Stability typical Linear PI Temperature Control High 2 2 A Output Current Control Above and Below Ambient Master Booster Operation Temperature Setpoint Heat and Cool Current Lim...

Page 2: ...sit the Wavelength Electronics website for the most accurate up to date and easy to use SOA calculator www teamwavelength com support design tools soa tc calculator Figure 1 shows the pin layout and d...

Page 3: ...electric Cooler TEC or resistive heater connected directly to Pin 9 and Pin 13 on the controller as shown in Figure 3 NOTE Use a max of 5 V power supply with the test load shown Values shown can simul...

Page 4: ...on for the sensor RT and setpoint RS resistors 8 VDD Control Electronics Supply Input Power supply input for the WHY56ND s internal control electronics Supply range input for this pin is 5 to 26 VDC 9...

Page 5: ...Negative Temperature Coefficient thermistors OUTPUTA provides the heating current to the TEC for NTC sensors Connect OUTPUTA to the positive thermoelectric terminal when using Positive Temperature Co...

Page 6: ...o Pin 13 Full Temp Range IS 100 mA VS 0 7 VS 0 5 V Compliance Voltage Pin 9 to Pin 13 Full Temp Range IS 1 A VS 1 2 VS 1 0 V Compliance Voltage Pin 9 to Pin 13 Full Temp Range IS 2 A VS 1 6 VS 1 4 V P...

Page 7: ...tes directly with thermistors or RTD temperature sensors The fundamental operating principle is that the controller adjusts the TEC drive current in order to change the temperature of the sensor that...

Page 8: ...TRUCTIONS STANDALONE NECESSARY EQUIPMENT The following equipment is required to configure the WHY56ND for basic operation WHY56ND Temperature Controller Thermistor or other temperature sensor Peltier...

Page 9: ...6 7 Use one of the sensors in the sections listed below SENSOR SELECTION Select a temperature sensor that is responsive around the desired operating temperature The temperature sensor should produce...

Page 10: ...th reference to Pin 1 AGND If the setpoint resistor RS is larger than the RTD resistance RRTD then the control loop will produce a heating current since the temperature sensed by the RTD is below cool...

Page 11: ...alues can be fine tuned experimentally Start with component values from Table 5 and operate the temperature controller system to determine if the load temperature settling time is satisfactory If it i...

Page 12: ...to Pin 1 AGND with a 1 5 k resistor when using RTDs LM335 type and AD590 type temperature sensors with a resistive heater Connect the resistive heater to Pins 9 and 13 to operate INCREASING OUTPUT CU...

Page 13: ...OLLERS 3 WHY56ND CONTROLLERS 4 WHY56ND CONTROLLERS 5 WHY56ND CONTROLLERS CURRENT LIMIT SET RESISTOR K RA RB 0 0 0 0 0 1 60 0 1 0 2 0 3 0 4 0 5 1 69 0 2 0 4 0 6 0 8 1 0 1 78 0 3 0 6 0 9 1 2 1 5 1 87 0...

Page 14: ...unit will be operating within the internalheat dissipation Safe Operating Area SOA STEP 1 INSTALL WHY56ND ON THE WHY56ND EV WITH HEATSINK AND FAN Match up the notch Figure 12 on the WHY56ND with the...

Page 15: ...Electronics to use the WHY56ND EV with other sensors or ranges STEP 5 ATTACHING THE VDD AND VS POWER SUPPLIES Ensure that the controller can be safely operated by checking the SOA Calculator website...

Page 16: ...board toggle switch The output is enabled when the green ON LED indicator is lit NOTE Before enabling the output make sure the RUN SET switch is set to the RUN position When enabled with this switch i...

Page 17: ...re configuration may be different than shown Fan can be rotated on the WHY so the location of the wires matches custom PCB WHY56ND and WHY56ND EV assembly instructions Figure 15 Match up the notch sho...

Page 18: ...perating thermistor resistance RT For example for a 10 k thermistor operating at 25 C choose R1 to be 20 k NOTE Pin 9 OUTA is the heating current sink and Pin 13 OUTB is the cooling current sink Figur...

Page 19: ...S given a desired operating temperature measured in Celsius Rs 2R3 0 5 273 15 TCelsius 1mV K 10 Resistor R3 is a fixed resistance value that can be used to scale or adjust the setpoint resistor RS Sel...

Page 20: ...W 3 Heatsink and 3 5CFM fan required 2 W PWHY 9 W 4 Unsafe Operating Area PWHY Power internally dissipated in the WHY56ND 1 2 3 4 5 10 15 20 25 0 0 0 5 1 0 1 5 2 0 Voltage Drop Across WHY VS VLOAD V...

Page 21: ...VDD VDD VDD VDD VS D1 GREEN VDD VS VDD VS S1 SPST LIM B LIM A SGL TURN SGL TURN CCW 0 AMPS CW 2 AMPS SGL TURN P GAIN I TERM OUT A OUT B SENSOR SENSOR VM1 VM2 VDD VS PGND COMMON OUTA OUTB LIMB LIMA VM2...

Page 22: ...e at 25 C a 10 k thermistor has a sensitivity of 43 mV C whereas an RTD sensor has a sensitivity of 4 mV C Proportional control term may be set too high Reduce the value of the proportional term For m...

Page 23: ...24 0 2 PLS 4 40 UNC Airflow Direction MECHANICAL SPECIFICATIONS 0 040 1 02mm Dia Thru Hole 0 060 1 5mm Dia Pad 4 Required All Tolerances are 5 unless noted WEIGHTS WHY56ND 0 6 oz WHS302 Heatsink 0 5...

Page 24: ...M A FAN COM VM2 VM1 CW 2 AMPS CCW 0 AMPS LIM B OUTPUT A SENSOR RUN RSET CW Incr CCW Decr sec I TERM PGND VS VDD OFF ENABLE ON WAVELENGTH ELECTRONICS For use with WHY56ND CW Decr CCW Incr P GAIN SET 2...

Page 25: ...UE PGND 2 ORANGE VS 3 RED VDD 4 BLACK COM 5 WHITE VM1 6 GREEN VM2 CABLING SPECIFICATIONS These cables are included with the WHY56ND EV Evaluation Board WTC3293 00101 INPUT CABLE MOLEX 43645 0400 MICRO...

Page 26: ...prohibited from reverse engineering decompiling or disassembling this product NOTICE The information contained in this document is subject to change without notice Wavelength will not be liable for e...

Reviews: