background image

© 2023

www.teamWavelength.com

12

WHY5640 TEMPERATURE CONTROLLER

STEP 6 [OPTIONAL]

 

Monitoring Setpoint & Actual 

Sensor Voltages - Pins 1, 3, 5 - 7

Configure the WHY5640 to monitor the setpoint and actual 

sensor voltages externally illustrated in 

Figure 10

.

Figure 10.  Monitor Setpoint and Actual Sensor Voltages 

Circuit

The  WHY5640  internal  sensor  bridge  amplifier  becomes 

balanced  (or  Pin  6  (ERR)  equals  1  V)  when  the  sensor 

voltage equals the setpoint voltage in 

Figure 10

.

The circuit shown in 

Figure 10

 uses a constant current 

source to produce a sensing current through the resistive 

temperature sensors resulting in a sensor voltage. A typical 

sensing current for 20 kΩ and lower thermistors is 100 µA. 

For thermistors higher than 20 kΩ use 10 µA. RTDs require 

a sensing current of 1 mA.

NOTE: PTC (Positive Temperature Coefficient) sensors 

such as RTD sensors, the AD590, and the LM335 require 

that the output Pins 9 (OUTA - ) and 13 (OUTB +) be 

reversed from the connection diagram on page 2 

(Figure 2) to produce the proper cooling and heating 

currents through the thermoelectric.

When using a 10K Thermistor, per 

Figure 10

connect the 

TEC as follows:

 

OUTPUT B+ → TEC +

 

OUTPUT A - → TEC -

OPERATION WITH RESISTIVE HEATERS

The  WHY5640  can  operate  resistive  heaters  by  disabling 

the cooling output current. When using resistive heaters with 

NTC thermistors, connect Pin 3 (LIMA) to Pin 1 (AGND) with 

a 1.5 kΩ resistor.

Connect Pin 2 (LIMB) to Pin 1 (AGND) with a 1.5 kΩ resistor 

when using RTDs, LM335 type and AD590 type temperature 

sensors with a resistive heater.

Connect the resistive heater to Pins 9 and 13 to operate. 

INCREASING OUTPUT CURRENT DRIVE

The  WHY5640  is  specifically  designed  to  operate  in  a 

master/booster  output  current  boosting  configuration. Two 

or more WHY5640 controllers can be coupled to boost the 

output current.

Figure 11

 shows how to connect two WHY5640 controllers 

together to increase the output current drive to 4.4 A.

Pin 4 (BUFA) and Pin 14 (BUFB) provide buffered outputs 

of  Pin  3  (LIMA)  and  Pin  2  (LIMB),  respectively.  The 

booster controller is controlled by the master controller by 

connecting Pin 4 (BUFA) of the master unit to Pin 3 (LIMA) 

of the booster unit. Similarly, Pin 14 (BUFB) of the master 

unit then connects to Pin 2 (LIMB) of the booster unit.

Each  successive  booster  unit  uses  its  buffered  outputs, 

Pins 4 and 14, to drive the next booster units output drive 

section via its Pins 3 and 2. The master controller sets the 

current limits for all successive booster controllers connected 

to the master controller, requiring only one set of heat and 

cool limit resistors.

Use 

Table 6

 to determine the limit setting resistors, R

A

 and 

R

B

, based on the number of WHY5640 controllers paralleled 

together.

+0.5V

SENSOR 

BRIDGE 

AMPLIFIER

1

7

6

10 k

10 k

10 k

10 k

10 k

10 k

SENSOR

VOLTAGE

MONITOR

SETPOINT

VOLTAGE

MONITOR

V

DD

VREF2

V

DD

R

T

 or R

RTD

VREF1

VREF1

R

4

R

4

I

SENSE

 =

LM324A

LM324D

LM324C

LM324B

THERMISTOR

OR

RTD

5

R

G

3

R

L

C

L

+1V

PROPORTIONAL/INTEGRAL 

CONTROL LOOP

AGND

SENS

ERR

PI

LIMA

2N3906

2k

5k

2k

SS

WHY5640

Summary of Contents for WHY5640

Page 1: ...Supply Low Cost 0 005 C Stability typical Linear PI Temperature Control High 2 2 A Output Current Control Above and Below Ambient Master Booster Operation Temperature Setpoint Heat and Cool Current L...

Page 2: ...the Wavelength Electronics website for the most accurate up to date and easy to use SOA calculator www teamwavelength com support design tools soa tc calculator Figure 1 shows the pin layout and descr...

Page 3: ...electric Cooler TEC or resistive heater connected directly to Pin 9 and Pin 13 on the controller as shown in Figure 3 NOTE Use a max of 5 V power supply with the test load shown Values shown can simul...

Page 4: ...on for the sensor RT and setpoint RS resistors 8 VDD Control Electronics Supply Input Power supply input for the WHY5640 s internal control electronics Supply range input for this pin is 5 to 26 VDC 9...

Page 5: ...Negative Temperature Coefficient thermistors OUTPUTA provides the heating current to the TEC for NTC sensors Connect OUTPUTA to the positive thermoelectric terminal when using Positive Temperature Co...

Page 6: ...o Pin 13 Full Temp Range IS 100 mA VS 0 7 VS 0 5 V Compliance Voltage Pin 9 to Pin 13 Full Temp Range IS 1 A VS 1 2 VS 1 0 V Compliance Voltage Pin 9 to Pin 13 Full Temp Range IS 2 A VS 1 6 VS 1 4 V P...

Page 7: ...operates directly with thermistors or RTD temperature sensors The fundamental operating principle is that the controller adjusts the TEC drive current in order to change the temperature of the sensor...

Page 8: ...UCTIONS STANDALONE NECESSARY EQUIPMENT The following equipment is required to configure the WHY5640 for basic operation WHY5640 Temperature Controller Thermistor or other temperature sensor Peltier ty...

Page 9: ...6 7 Use one of the sensors in the sections listed below SENSOR SELECTION Select a temperature sensor that is responsive around the desired operating temperature The temperature sensor should produce...

Page 10: ...th reference to Pin 1 AGND If the setpoint resistor RS is larger than the RTD resistance RRTD then the control loop will produce a heating current since the temperature sensed by the RTD is below cool...

Page 11: ...alues can be fine tuned experimentally Start with component values from Table 5 and operate the temperature controller system to determine if the load temperature settling time is satisfactory If it i...

Page 12: ...to Pin 1 AGND with a 1 5 k resistor when using RTDs LM335 type and AD590 type temperature sensors with a resistive heater Connect the resistive heater to Pins 9 and 13 to operate INCREASING OUTPUT CU...

Page 13: ...OLLERS 3 WHY5640 CONTROLLERS 4 WHY5640 CONTROLLERS 5 WHY5640 CONTROLLERS CURRENT LIMIT SET RESISTOR K RA RB 0 0 0 0 0 1 60 0 1 0 2 0 3 0 4 0 5 1 69 0 2 0 4 0 6 0 8 1 0 1 78 0 3 0 6 0 9 1 2 1 5 1 87 0...

Page 14: ...ll be operating within the internalheat dissipation Safe Operating Area SOA STEP 1 INSTALL WHY5640 ON THE WHY5690 WITH HEATSINK AND FAN Match up the notch Figure 12 on the WHY5640 with the silkscreen...

Page 15: ...lectronics to use the WHY5690 with other sensors or ranges STEP 5 ATTACHING THE VDD AND VS POWER SUPPLIES Ensure that the controller can be safely operated by checking the SOA Calculator website The V...

Page 16: ...board toggle switch The output is enabled when the green ON LED indicator is lit NOTE Before enabling the output make sure the RUN SET switch is set to the RUN position When enabled with this switch i...

Page 17: ...an wire configuration may be different than shown Fan can be rotated on the WHY so the location of the wires matches custom PCB WHY5640 and WHY5690 assembly instructions Figure 15 Match up the notch s...

Page 18: ...perating thermistor resistance RT For example for a 10 k thermistor operating at 25 C choose R1 to be 20 k NOTE Pin 9 OUTA is the heating current sink and Pin 13 OUTB is the cooling current sink Figur...

Page 19: ...S given a desired operating temperature measured in Celsius Rs 2R3 0 5 273 15 TCelsius 1mV K 10 Resistor R3 is a fixed resistance value that can be used to scale or adjust the setpoint resistor RS Sel...

Page 20: ...2 W 3 Heatsink and 3 5CFM fan required 2 W PWHY 9 W 4 Unsafe Operating Area PWHY Power internally dissipated in the WHY5640 1 2 3 4 5 10 15 20 25 0 0 0 5 1 0 1 5 2 0 Voltage Drop Across WHY VS VLOAD V...

Page 21: ...VS VDD VS S1 SPST LIM B LIM A SGL TURN SGL TURN CCW 0 AMPS CW 2 AMPS SGL TURN P GAIN I TERM OUT A OUT B SENSOR SENSOR VM1 VM2 VDD VS PGND COMMON OUTA OUTB LIMB LIMA VM2 VM1 S S R8 1k R7 1k CCW 0 AMPS...

Page 22: ...ple at 25 C a 10 k thermistor has a sensitivity of 43 mV C whereas an RTD sensor has a sensitivity of 4 mV C Proportional control term may be set too high Reduce the value of the proportional term For...

Page 23: ...40 UNC Airflow Direction MECHANICAL SPECIFICATIONS All Tolerances are 5 unless noted WEIGHTS WHY5640 0 6 oz WHS302 Heatsink 0 5 oz WXC303 4 Fan 0 3 oz PIN DIAMETER 0 020 PIN LENGTH 0 157 12 PIN MATERI...

Page 24: ...FAN COM VM2 VM1 CW 2 AMPS CCW 0 AMPS LIM B OUTPUT A SENSOR RUN RSET CW Decr CCW Incr sec I TERM PGND VS VDD OFF ENABLE ON WAVELENGTH ELECTRONICS For use with WHY5640 CW Decr CCW Incr P GAIN SET CCW D...

Page 25: ...BLUE PGND 2 ORANGE VS 3 RED VDD 4 BLACK COM 5 WHITE VM1 6 GREEN VM2 CABLING SPECIFICATIONS These cables are included with the WHY5690 Evaluation Board WTC3293 00101 INPUT CABLE MOLEX 43645 0400 MICRO...

Page 26: ...eering decompiling or disassembling this product NOTICE The information contained in this document is subject to change without notice Wavelength will not be liable for errors contained herein or for...

Reviews: