background image

170761-UIM-B-0406

4

Unitary Products Group

PRECAUTIONS DURING BRAZING OF LINES

All outdoor unit and evaporator coil connections are copper-to-copper
and should be brazed with a phosphorous-copper alloy material such
as Silfos-5 or equivalent. DO NOT use soft solder. The outdoor units
have reusable service valves on both the liquid and vapor connections.
The total system refrigerant charge is retained within the outdoor unit
during shipping and installation. The reusable service valves are pro-
vided to evacuate and charge per this instruction.

Serious service problems can be avoided by taking adequate precau-
tions to assure an internally clean and dry system.

PRECAUTIONS DURING BRAZING SERVICE VALVE

Precautions should be taken to prevent heat damage to service valve
by wrapping a wet rag around it as shown in Figure 5. Also, protect all
painted surfaces, insulation, and plastic base during brazing. After braz-
ing cool joint with wet rag.

Valve can be opened by removing the plunger cap and fully inserting a
hex wrench into the stem and backing out counter-clockwise until valve
stem just touches the chamfered retaining wall.

Connect the refrigerant lines using the following procedure:

1.

Remove the cap and Schrader core from both the liquid and vapor
service valve service ports at the outdoor unit. Connect low pres-
sure nitrogen to the liquid line service port.

2.

Braze the liquid line to the liquid valve at the outdoor unit. Be sure
to wrap the valve body with a wet rag. Allow the nitrogen to con-
tinue flowing. Refer to the Tabular Data Sheet for proper liquid line
sizing.

3.

Carefully remove the rubber plugs from the evaporator liquid and
vapor connections at the indoor coil.

4.

Braze the liquid line to the evaporator liquid connection. Nitrogen
should be flowing through the evaporator coil.

5.

Slide the grommet away from the vapor connection at the indoor
coil. Braze the vapor line to the evaporator vapor connection. After
the connection has cooled, slide the grommet back into original
position. Refer to the Tabular Data Sheet for proper vapor line siz-
ing.

6.

Protect the vapor valve with a wet rag and braze the vapor line
connection to the outdoor unit. The nitrogen flow should be exiting
the system from the vapor service port connection. After this con-
nection has cooled, remove the nitrogen source from the liquid fit-
ting service port.

7.

Replace the Schrader core in the liquid and vapor valves.

8.

Go to “SECTION IV” for TXV installation.

9.

Leak test all refrigerant piping connections including the service
port flare caps to be sure they are leak tight. DO NOT OVER-
TIGHTEN (between 40 and 60 inch - lbs. maximum).

10. Evacuate the vapor line, evaporator, and the liquid line to 500

microns or less.

NOTE: Line set and indoor coil can be pressurized to 250 psig with dry

nitrogen and leak tested with a bubble type leak detector. Then
release the nitrogen charge.

NOTE: Do not use the system refrigerant in the outdoor unit to purge or

leak test.

 Dry nitrogen should always be supplied through the tubing while it
is being brazed, because the temperature is high enough to cause
oxidation of the copper unless an inert atmosphere is provided. The
flow of dry nitrogen should continue until the joint has cooled.
Always use a pressure regulator and safety valve to insure that only
low pressure dry nitrogen is introduced into the tubing. Only a small
flow is necessary to displace air and prevent oxidation.

This is not a backseating valve. The service access port has a
valve core. Opening or closing valve does not close service access
port.
If the valve stem is backed out past the chamfered retaining wall,
the O-ring can be damaged causing leakage or system pressure
could force the valve stem out of the valve body possibly causing
personal injury.

 FIGURE 5: Heat Protection

The evaporator is pressurized.

Summary of Contents for YMB Series

Page 1: ...or moderate injury It is also used to alert against unsafe practices and hazards involving only property dam age Improper installation may create a condition where the operation of the product could cause personal injury or property damage Improper installation adjustment alteration service or mainte nance can cause injury or property damage Refer to this manual for assistance or for additional in...

Page 2: ...sor burnout then installation of a 100 activated alumina suction line filter drier is required in addition to the factory installed liquid line drier Operate the system for 10 hours Monitor the suction drier pres sure drop If the pressure drop exceeds 3 psig replace both the suction line and liquid line driers After a total of 10 hours run time where the suction line pressure drop has not exceeded...

Page 3: ...door unit is above the indoor coil oil trapping is necessary An oil trap should be provided for every 20 ft of rise See Figure 2 PRECAUTIONS DURING LINE INSTALLATION 1 Install the lines with as few bends as possible Care must be taken not to damage the couplings or kink the tubing Use clean hard drawn copper tubing where no appreciable amount of bending around obstruction is necessary If soft copp...

Page 4: ...l 5 Slide the grommet away from the vapor connection at the indoor coil Braze the vapor line to the evaporator vapor connection After the connection has cooled slide the grommet back into original position Refer to the Tabular Data Sheet for proper vapor line siz ing 6 Protect the vapor valve with a wet rag and braze the vapor line connection to the outdoor unit The nitrogen flow should be exiting...

Page 5: ...orous copper alloy material such as Silfos 5 or equivalent DO NOT use soft solder Install the TXV bulb to the vapor line near the equalizer line using the two bulb clamps furnished with the TXV assembly Ensure the bulb is making maximum contact Refer to TXV installation instruction for view of bulb location a Bulb should be installed on a horizontal run of the vapor line if possible On lines under...

Page 6: ...xposed glass or appliances drafts from outside doors or supply air grilles 5 Route the 24 volt control wiring NEC Class 2 from the outdoor unit to the indoor unit and thermostat NOTE To eliminate erratic operation seal the hole in the wall at the thermostat with permagum or equivalent to prevent air drafts affecting the operation of in the thermostat DEHUMIDIFICATION CONTROL A dehumidification con...

Page 7: ...brated charging cylinder or accurate weighing device is avail able add refrigerant accordingly Otherwise model specific charging charts are provided in Tables 12 18 for cooling mode only There is no accurate method for charging these units in the heating mode If charg ing is required during the heating mode the unit must be evacuated and charge weighed in according to the rating plate If TXV indoo...

Page 8: ...95 212 105 242 115 94 56 124 71 154 84 184 96 214 106 244 115 96 57 126 72 156 85 186 97 216 107 246 116 98 58 128 73 158 86 188 97 218 107 248 117 100 59 130 74 160 87 190 98 220 108 250 117 102 60 132 75 162 88 192 99 222 109 252 118 104 61 134 76 164 88 194 99 224 109 254 118 106 62 136 77 166 89 196 100 226 110 256 119 108 63 138 78 168 90 198 101 228 111 258 119 FIGURE 8 Heat Pump Flow Diagra...

Page 9: ...display various types of diagnostic information LED1 is red and LED2 is green The location of the LED s is shown in Figures 10 and 13 These LED s are used to display opera tional mode status and fault information OPERATIONAL MODE DETECTION The control can be used in a variety of applications including heat pumps and air conditioners with modulating compressors The control uses various inputs to de...

Page 10: ...reen is not energized These faults typically occur when the heat pump has been operating and a problem occurs Sensor or Switch Fault Codes Table 7 shows the faults that the control can detect when a problem is present with a sensor or switch The control displays this type of error by energizing LED1 Red constantly and flashing LED2 Green These faults typically occur when the heat pump has been ope...

Page 11: ...criptions of the conditions required for the control to enter the soft lockout mode are contained in other sections of this document 1 High pressure switch a Two openings within six hours 2 Low pressure switch a One opening of the switch for more than five seconds except under certain conditions 3 High discharge temperature with optional discharge sensor a Temperature reading exceeds 263F 4 Low di...

Page 12: ...at has been forced using the TEST inputs It will also display the active defrost curve using the X L terminal when the operational mode is being displayed using the LED s For instance the X L output will be energized with two flashes when defrost curve 2 is active The control will lock out the com pressor if the defrost curve selection jumper is not properly set Defrost Cycle Initiation The contro...

Page 13: ...onnected to the indoor unit The SWITCH POINT jumper on the control has no effect on the opera tion of the heat pump The control implements the Hot Heat Pump Mode by controlling the indoor airflow level during heating operation only Cooling operation is not affected By reducing the indoor airflow level the heat pump system will operate with increased indoor discharge air temperatures The con trol c...

Page 14: ...flow because of the Y1 signal being delivered to the Y1 input of the indoor unit When the ten minute timer expires the control will compare the liquid line temperature to the indoor airflow control curve for the measured outdoor ambient temperature If the point is within region A See Figure 12 the control shall maintain Y2 OUT in the de energized state until the liquid line temperature rises so th...

Page 15: ...ient temperature is greater than the bal ance point setting the control will not energize the auxiliary heat out puts However the control shall ignore the balance point setting and energize auxiliary heat under some conditions as described in the auxil iary heat sections of this document FOSSIL FUEL JUMPER FFUEL Setting The control includes a FFUEL jumper to specify whether the control is installe...

Page 16: ...ll de energize the compressor outputs and energize W1 Out and W2 Out immediately Table 11 describes the auxiliary heat operation for fossil fuel mode Bonnet Sensor Fossil Fuel Mode The heat pump may be equipped in the field with an optional indoor air discharge temperature or bonnet sensor The control does not allow the heat pump and the furnace to operate simultaneously even with a bon net sensor...

Page 17: ...n time If the control senses another opening of the high pressure switch before the timer expires it will cause a soft lockout condition The second opening of the high pressure switch must be greater than 160 milliseconds for the lockout to occur If the second opening is between 40 and 160 milliseconds the control will de energize the com pressor but not cause a soft lockout condition If the contr...

Page 18: ... and assure proper drainage IT IS UNLAWFUL TO KNOWINGLY VENT RELEASE OR DIS CHARGE REFRIGERANT INTO THE OPEN AIR DURING REPAIR SERVICE MAINTENANCE OR THE FINAL DIS POSAL OF THIS UNIT WHEN THE SYSTEM IS FUNCTIONING PROPERLY AND THE OWNER HAS BEEN FULLY INSTRUCTED SECURE THE OWNER S APPROVAL TABLE 12 1 1 2 Ton Subcooling Charging Chart Outdoor Ambient Indoor Wet Bulb F 57 62 67 72 DB F Liquid Pressu...

Page 19: ...7 11 269 11 110 286 11 287 11 286 11 288 11 115 305 11 306 11 305 11 307 11 120 324 10 326 11 324 11 326 11 125 344 10 345 10 343 11 346 11 TABLE 17 4 Ton Subcooling Charging Chart Outdoor Ambient Indoor Wet Bulb F 57 62 67 72 DB F Liquid Pressure psig at Base Valve 65 141 4 140 3 141 3 142 2 70 155 5 154 4 156 4 157 3 75 169 5 169 5 171 4 172 4 80 183 5 183 5 185 5 187 4 85 197 5 198 5 200 5 202 ...

Page 20: ...ce Printed in U S A 170761 UIM B 0406 Copyright by York International Corp 2006 All rights reserved Supersedes 170761 UIM A 0106 Unitary 5005 Norman Product York OK Group Drive 73069 SECTION X WIRING DIAGRAM FIGURE 13 Wiring Diagram ...

Reviews: