Ublox RCB-F9T Integration Manual Download Page 30

RCB-F9T - Integration manual

3.9 Clocks and time

This section introduces and explains the concepts of receiver clocks and time bases.

3.9.1 Receiver local time

The receiver is dependent on a local oscillator for both the operation of its radio parts and also for
timing within its signal processing. No matter what nominal frequency the local oscillator has, u-blox
receivers subdivide the oscillator signal to provide a 1-kHz reference clock signal, which is used to
drive many of the receiver's processes. In particular, the measurement of satellite signals is arranged
to be synchronized with the "ticking" of this 1-kHz clock signal.

When the receiver first starts, it has no information about how these clock ticks relate to other time
systems; it can only count time in 1 millisecond steps. However, as the receiver derives information
from the satellites it is tracking or from aiding messages, it estimates the time that each 1-kHz
clock tick takes in the time-base of the chosen GNSS system. This estimate of GNSS time based on
the local 1-kHz clock is called receiver local time.

As  receiver  local  time  is  a  mapping  of  the  local  1-kHz  reference  onto  a  GNSS  time-base,  it
may  experience  occasional  discontinuities,  especially  when  the  receiver  first  starts  up  and  the
information  it  has  about  the  time-base  is  changing.  Indeed,  after  a  cold  start,  the  receiver  local
time will initially indicate the length of time that the receiver has been running. However, when the
receiver obtains some credible timing information from a satellite or an aiding message, it will jump
to an estimate of GNSS time.

3.9.2 Navigation epochs

Each navigation solution is triggered by the tick of the 1-kHz clock nearest to the desired navigation
solution time. This tick is referred to as a 

navigation epoch

. If the navigation solution attempt is

successful, one of the results is an accurate measurement of time in the time-base of the chosen
GNSS system, called 

GNSS system time

. The difference between the calculated GNSS system time

and receiver local time is called 

clock bias

 (and 

clock drift

 is the rate at which this bias is changing).

In practice the receiver's local oscillator will not be as stable as the atomic clocks to which GNSS
systems  are  referenced  and  consequently  clock  bias  will  tend  to  accumulate.  However,  when
selecting the next navigation epoch, the receiver will always try to use the 1-kHz clock tick which it
estimates to be closest to the desired fix period as measured in GNSS system time. Consequently
the  number  of  1-kHz  clock  ticks  between  fixes  will  occasionally  vary.  This  means  that  when
producing one fix per second, there will normally be 1000 clock ticks between fixes, but sometimes,
to correct drift away from GNSS system time, there will be 999 or 1001.

The GNSS system time calculated in the navigation solution is always converted to a time in both
the GPS and UTC time-bases for output.

Clearly when the receiver has chosen to use the GPS time-base for its GNSS system time, conversion
to GPS time requires no work at all, but conversion to UTC requires knowledge of the number of
leap seconds since GPS time started (and other minor correction terms). The relevant GPS-to-UTC
conversion parameters are transmitted periodically (every 12.5 minutes) by GPS satellites, but can
also be supplied to the receiver via the UBX-MGA-GPS-UTC aiding message. By contrast when the
receiver has chosen to use the GLONASS time-base as its GNSS system time, conversion to GPS
time is more difficult as it requires knowledge of the difference between the two time-bases, but as
GLONASS time is closely linked to UTC, conversion to UTC is easier.

When  insufficient  information  is  available  for  the  receiver  to  perform  any  of  these  time-base
conversions precisely, pre-defined default offsets are used. Consequently plausible times are nearly

UBX-22004121 - R01

 

3 Receiver functionality

Page 30 of 64

C1-Public

Early production information

Summary of Contents for RCB-F9T

Page 1: ...accuracy timing board Integration manual Abstract This document describes the features and application of RCB F9T a multi band GNSS timing board o ering nanosecond level timing accuracy www u blox co...

Page 2: ...ghts in the products names logos and designs included in this document Copying reproduction modi cation or disclosure to third parties of this document or any part thereof is only permitted with the e...

Page 3: ...21 3 3 3 Geofence state evaluation 21 3 4 Logging 22 3 4 1 Introduction 22 3 4 2 Setting the logging system up 22 3 4 3 Information about the log 23 3 4 4 Recording 23 3 4 5 Retrieval 25 3 4 6 Command...

Page 4: ...er 49 3 12 4 Sky view signal masking 50 3 13 Forcing a receiver reset 51 3 14 Firmware upload 52 4 Design 53 4 1 Pin assignment 53 4 2 Power supply 53 4 2 1 VCC Main supply voltage 53 4 2 2 RCB F9T VC...

Page 5: ...ormation on all aspects of RCB F9T system software and hardware design The purpose of this document is to provide guidelines for a successful integration of the receiver with the customer s end produc...

Page 6: ...its di erential timing mode In di erential timing mode correction data is exchanged with other neighboring RCB F9T timing receivers via a communication network In di erential timing mode the RCB F9T c...

Page 7: ...oup name CFG GROUP a convention used in u center and within this document Within u center a con guration group is identi ed as Group name and the con guration item is identi ed as the item name under...

Page 8: ...the various communication interfaces These include parameters for the data framing transfer rate and enabled input output protocols The con guration groups available for each interface are Interface C...

Page 9: ...igh precision position 3 1 5 Di erential timing mode con guration In di erential timing mode the RCB F9T can operate either as a master reference station or as a slave station Using the RTCM3 protocol...

Page 10: ...urvey in Survey in is a procedure that is carried out prior to entering Time mode It estimates the receiver position by building a weighted mean of all valid 3D position solutions Two major parameters...

Page 11: ...HT_HP High precision height of the ARP position coordinate in 0 1 millimeters CFG TMODE FIXED_POS_ACC Fixed position 3D accuracy estimate Table 6 Con guration items used for setting a timing receiver...

Page 12: ...ion When the RCB F9T acts as a slave receiver it receives di erential corrections RTCM 3 3 messages from a master reference station and aligns its time pulse to it Connect the slave receiver to the re...

Page 13: ...output message Table 8 Example secondary output con guration items Enabling the secondary output The rst necessary step to enable the secondary output is to con gure the CFG NAV2 OUT_ENABLED con gurat...

Page 14: ...X NAV EOE or a UBX NAV2 EOE message respectively In other words a UBX NAV EOE message will be output at the end of the UBX NAV class enabled messages and a UBX NAV2 EOE message will be output at the e...

Page 15: ...ty restricted to 0 m s Zero dynamics assumed Pedestrian Applications with low acceleration and speed e g how a pedestrian would move Low acceleration assumed Automotive Used for applications with equi...

Page 16: ...satellite When a satellite is lost after a successful 3D x min four satellites available the altitude is kept constant at the last known value This is called a 2D x u blox receivers do not calculate a...

Page 17: ...r ground lter is published in the UBX NAV PVT message headMot eld UBX NAV VELNED message heading eld NMEA RMC message cog eld and NMEA VTG message cogt eld If the low speed course over ground lter is...

Page 18: ...Integration manual Figure 2 Position publication in static hold mode Figure 3 Flowchart of the static hold mode UBX 22004121 R01 3 Receiver functionality Page 18 of 64 C1 Public Early production info...

Page 19: ...owing section describes the receiver operation when SBAS reception is required by users The RCB F9T is capable of receiving multiple SBAS signals concurrently even from di erent SBAS systems WAAS EGNO...

Page 20: ...orth America In the eastern parts of North America make sure that EGNOS satellites do not take preference over WAAS satellites The satellite signals from the EGNOS system should be disallowed by using...

Page 21: ...s surface The receiver will then evaluate for each of these areas whether the current position lies within the area or not and signal the state via UBX messaging and PIO toggling 3 3 2 Interface Geof...

Page 22: ...OG RETRIEVESTRING A byte string log entry returned by the receiver UBX LOG FINDTIME Finds the index of the rst entry given time Table 15 Logging retrieval messages 3 4 2 Setting the logging system up...

Page 23: ...ther three bytes per x Each log also has a xed overhead which is dependent on the log type The approximate size of this overhead is shown in the following table Log type Overhead circular Up to 40 kB...

Page 24: ...t point on earth or higher than 20 000 m may not be recorded in the log Ground speed to a precision of 1 cm s The x type only successful x types since these are the only ones recorded The number of sa...

Page 25: ...ia CFG_LOGFILTER RECORD_ENA while retrieving log entries from a circular log to avoid deletion of the requested entries between the request and transmission The receiver will send a UBX LOG RETRIEVEPO...

Page 26: ...ortId Electrical interface 1 0x0100 UART1 Table 17 Port number assignment It is important to isolate interface pins when the RCB F9T VCC is removed They can be allowed to oat or connected to a high im...

Page 27: ...supervisor can also be checked by polling the related CFG HW_ANT_ con guration items The current active antenna status can be determined by polling the UBX MON RF message If an antenna is connected t...

Page 28: ...CB F9T Start up message at power up if con guration is stored GNTXT 01 01 02 ANTSUPERV AC SD PDoS SR 3E GNTXT 01 01 02 ANTSTATUS INIT 3B GNTXT 01 01 02 ANTSTATUS OK 25 ANTSUPERV AC SD PDoS SR SR indic...

Page 29: ...y modi cation 3 8 1 Authorization To use the AssistNow services customers will need to obtain an authorization token from u blox Go to https www u blox com en solution services assistnow or contact yo...

Page 30: ...n accurate measurement of time in the time base of the chosen GNSS system called GNSS system time The di erence between the calculated GNSS system time and receiver local time is called clock bias and...

Page 31: ...s use this representation internally only converting to a more conventional form at external interfaces The iTOW eld is the most obvious externally visible consequence of this internal representation...

Page 32: ...ar month day hour min and sec have fairly obvious meanings and are all guaranteed to match the corresponding values in NMEA messages generated by the same navigation epoch This facilitates simple sync...

Page 33: ...he current time within their data message In most cases this is a time of week often abbreviated to TOW which indicates the elapsed number of seconds since the start of the week midnight Saturday Sund...

Page 34: ...028 It is important to set the reference rollover week number appropriately when supplying u blox receivers with simulated signals especially when the scenarios are in the past 3 10 Timing functionali...

Page 35: ...more than one UBX TIM TP message can appear between two pulses if the time pulse frequency is set lower than 1 Hz In this case all UBX TIM TP messages in between time pulses T1 and T2 belong to T2 an...

Page 36: ...efore if a time pulse is con gured to use a variant of UTC time after a cold start substantial delays before the receiver has su cient information to start outputting the time pulse can be expected 3...

Page 37: ...em is set pulses are aligned to the top of a second polarity If set the rst edge of the pulse is a rising edge pulse polarity rising grid UTC GNSS Selection between UTC 0 GPS 1 GLONASS 2 BeiDou 3 and...

Page 38: ...nal parameters for suspicious changes to identify external manipulation A ag in UBX NAV STATUS message ags2 spoofDetState alerts the user to potential spoo ng activity A detection is successful when a...

Page 39: ...ge it is also possible to specify the thresholds at which broadband and CW jamming are reported These thresholds should be interpreted as the dB level above normal It is also possible to specify wheth...

Page 40: ...indicate the structure Because of this the following sections are organized by GNSS However in some cases the identity of the GNSS is not su cient and this is described where appropriate in the follow...

Page 41: ...e as described in the GPS ICD The ten words are arranged as follows Figure 13 GPS L2C subframe words 3 12 1 2 3 GPS L5 For GPS L5 signals each reported subframe contains the CNAV message as described...

Page 42: ...dle chip which should always have a value of zero The meaning of other bits varies with string and frame number The fourth and nal 32 bit word in the UBX RXM SFRBX message contains frame and superfram...

Page 43: ...BeiDou ICD Each subframe comprises ten data words which are reported in the same order they are received Each word is arranged as follows Figure 16 BeiDou subframe word Note that as the BeiDou data w...

Page 44: ...and F NAV message respectively The UBX RXM SFRBX structure for the I NAV and F NAV messages are shown below 3 12 1 5 1 Galileo E1 B For the Galileo E1 B signal each reported subframe contains a pair o...

Page 45: ...ages are reported in very similar manner but the page type bits will have value 1 and the structure of the eight words will be slightly di erent as indicated by the Galileo ICD UBX 22004121 R01 3 Rece...

Page 46: ...subframe contains a pair of I NAV pages as described in the Galileo ICD Galileo pages can either be Nominal or Alert pages For Nominal pages the eight words are arranged as follows Figure 18 Galileo...

Page 47: ...ICD For each page the eight words are arranged as follows Figure 19 Galileo E5a subframe words 3 12 1 6 SBAS For SBAS L1C A signals each reported subframe contains eight 32 bit data words to deliver...

Page 48: ...ta message formats reported by the UBX RXM SFRBX message GNSS Signal gnssId sigId numWords period GPS L1C A 0 0 10 6s GPS L2CL 0 3 10 12s GPS L2CM 0 4 10 12s GPS L5 I 0 6 10 6s SBAS L1C A 1 0 9 1s Gal...

Page 49: ...detects the previously stored data in the ash It restores the corresponding memory and reports the success of the operation with a UBX UPD SOS RESTORED message on the port on which it had received the...

Page 50: ...1 Spectrum analyzer view in u center with the option view hold selected The span frequency depends on the number of constellations enabled which impacts the spectrum resolution owing to a xed set of p...

Page 51: ...to download ephemeris before it can calculate position and velocity data As the ephemeris data usually is outdated after 4 hours the receiver will typically start with a warm start if it has been pow...

Page 52: ...omers implement a rmware update mechanism in their system A rmware image is a binary le containing the software to be run by the GNSS receiver A rmware update is the process of transferring a rmware i...

Page 53: ...t 5 RXD I UART RXD LVCMOS 6 TP1 O Time pulse1 LVCMOS 7 TP2 O Time pulse2 LVCMOS 8 GND Ground Table 22 RCB F9T pin assignment See Figure 26 for a detailed view of the board measurements The labelling o...

Page 54: ...tive antenna powering If active antenna powering is not needed then the VCC_ANT can be left to unconnected 4 3 Antenna The RCB F9T requires an active antenna with integral LNA to ensure good performan...

Page 55: ...o observe strict EOS ESD EMI handling and protection measures To prevent overstress damage at the RF_IN of your receiver never exceed the maximum input power as speci ed in the applicable data sheet 1...

Page 56: ...um speci ed ratings EOS failure can happen if RF emitters are close to a GNSS receiver or its antenna EOS causes damage to the chip structures If the RF_IN is damaged by EOS it is hard to determine wh...

Page 57: ...ty to the GNSS receiving antenna especially if such a system is integrated with the GNSS receiver Even at reasonable antenna selectivity destructive power levels may reach the RF input of the GNSS rec...

Page 58: ...interference include maintaining a good grounding concept in the design and adding a GNSS band pass lter into the antenna input line to the receiver For GSM applications such as typical handset design...

Page 59: ...n antenna patch connect ground of the device When handling the RF pin do not come into contact with any charged capacitors and be careful when contacting materials that can develop charges e g patch a...

Page 60: ...24 RCB F9T speci c UART baud rate antenna supervisor and time pulse 1 default con gurations B Glossary Abbreviation De nition ANSI American National Standards Institute ARP Antenna reference point Bei...

Page 61: ...m SV Space vehicle a satellite UBX u blox C RCB F9T PCB dimensions The RCB F9T pcb dimensions are shown below in Figure 26 to provide accurate mounting and antenna connector alignment information Figu...

Page 62: ...ace description UBX 21048598 3 Radio Resource LCS Protocol RRLP 3GPP TS 44 031 version 11 0 0 Release 11 For regular updates to u blox documentation and to receive product change noti cations please r...

Page 63: ...vision history Revision Date Name Status comments R01 28 Mar 2022 byou Combined integration manual issued for RCB F9T 0 and RCB F9T 1 variants UBX 22004121 R01 Revision history Page 63 of 64 C1 Public...

Page 64: ...ail info_cn u blox com Support support_cn u blox com Regional O ce China Chongqing Phone 86 23 6815 1588 E mail info_cn u blox com Support support_cn u blox com Regional O ce China Shanghai Phone 86 2...

Reviews: