background image

DSO

3

 ACOUSTIC DATA 

The diagrams provide a summary of the A-weighted sound power level 

from diffuser, L

WA

. Correction factors in table 5 are used to calculate 

emitted sound power level at the respective frequencies, L

W

 = L

WA

 + 

KO. A room with absorption equivalent to 10m² Sabine will have a 

sound pressure level which is 4dB below the sound power level emitted.

 

Example

:

Office premises require an indoor air extraction of 25 l/s, and for this 

purpose a DSO Ø100 extract air terminal device is used.  

Room attenuation is 6dB, and the centre cone is to be choked to 80 Pa 

total pressure loss.

We aim to find:

a)  Emitted sound power level from the valve at 250 Hz, at chosen  

 

 

working point.

b)  A-weighted sound pressure level in the room with the centre cone  

 

in +10 position.

c)  A-weighted sound pressure level in the room with centre cone  

 

 choked.

Solution:

DSO Ø100, required air flow rate 25 l/s. According to diagram 1 the 

emitted sound power will read L

WA

 = 29dB(A) for po10 mm,  

with a total pressure loss of 50Pa. 

 

a) Table 1 shows that the correction factor for open damper at  

 

250 Hz is -2dB. L

W

 at 250 Hz is thus:  

 L

WA

 + KO =29 + (-2) = 27dB 

 

b) A room attenuation equivalent to 6dB provides a sound pressure  

 

level in the room of: 27 – 6 = 21dB(A) 

 

c) With 30 Pa chocking we reach 80 Pa, and the diagram shows  

 

an increase in L

WA

 of 5dB. The sound pressure level is thus:  

 

21 + 5 = 26dB(A) 

 CALCULATION DIAGRAMS

Diagram1, DSO Ø100

Diagram 2, DSO Ø125

Reviews: