background image

STANDARD TERMS FOR EVALUATION MODULES

1.

Delivery:

TI delivers TI evaluation boards, kits, or modules, including any accompanying demonstration software, components, and/or

documentation which may be provided together or separately (collectively, an “EVM” or “EVMs”) to the User (“User”) in accordance
with the terms set forth herein. User's acceptance of the EVM is expressly subject to the following terms.

1.1

EVMs are intended solely for product or software developers for use in a research and development setting to facilitate feasibility
evaluation, experimentation, or scientific analysis of TI semiconductors products. EVMs have no direct function and are not
finished products. EVMs shall not be directly or indirectly assembled as a part or subassembly in any finished product. For
clarification, any software or software tools provided with the EVM (“Software”) shall not be subject to the terms and conditions
set forth herein but rather shall be subject to the applicable terms that accompany such Software

1.2

EVMs are not intended for consumer or household use. EVMs may not be sold, sublicensed, leased, rented, loaned, assigned,
or otherwise distributed for commercial purposes by Users, in whole or in part, or used in any finished product or production
system.

2

Limited Warranty and Related Remedies/Disclaimers

:

2.1

These terms do not apply to Software. The warranty, if any, for Software is covered in the applicable Software License
Agreement.

2.2

TI warrants that the TI EVM will conform to TI's published specifications for ninety (90) days after the date TI delivers such EVM
to User. Notwithstanding the foregoing, TI shall not be liable for a nonconforming EVM if (a) the nonconformity was caused by
neglect, misuse or mistreatment by an entity other than TI, including improper installation or testing, or for any EVMs that have
been altered or modified in any way by an entity other than TI, (b) the nonconformity resulted from User's design, specifications
or instructions for such EVMs or improper system design, or (c) User has not paid on time. Testing and other quality control
techniques

are

used

to

the

extent

TI

deems

necessary.

TI

does

not

test

all

parameters

of

each

EVM.

User's claims against TI under this Section 2 are void if User fails to notify TI of any apparent defects in the EVMs within ten (10)
business days after delivery, or of any hidden defects with ten (10) business days after the defect has been detected.

2.3

TI's sole liability shall be at its option to repair or replace EVMs that fail to conform to the warranty set forth above, or credit
User's account for such EVM. TI's liability under this warranty shall be limited to EVMs that are returned during the warranty
period to the address designated by TI and that are determined by TI not to conform to such warranty. If TI elects to repair or
replace such EVM, TI shall have a reasonable time to repair such EVM or provide replacements. Repaired EVMs shall be
warranted for the remainder of the original warranty period. Replaced EVMs shall be warranted for a new full ninety (90) day
warranty period.

3

Regulatory Notices:

3.1

United States

3.1.1

Notice applicable to EVMs not FCC-Approved:

FCC NOTICE:

This kit is designed to allow product developers to evaluate electronic components, circuitry, or software

associated with the kit to determine whether to incorporate such items in a finished product and software developers to write
software applications for use with the end product. This kit is not a finished product and when assembled may not be resold or
otherwise marketed unless all required FCC equipment authorizations are first obtained. Operation is subject to the condition
that this product not cause harmful interference to licensed radio stations and that this product accept harmful interference.
Unless the assembled kit is designed to operate under part 15, part 18 or part 95 of this chapter, the operator of the kit must
operate under the authority of an FCC license holder or must secure an experimental authorization under part 5 of this chapter.

3.1.2

For EVMs annotated as FCC – FEDERAL COMMUNICATIONS COMMISSION Part 15 Compliant:

CAUTION

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not
cause harmful interference, and (2) this device must accept any interference received, including interference that may cause
undesired operation.

Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to
operate the equipment.

FCC Interference Statement for Class A EVM devices

NOTE: This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of
the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is
operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not
installed and used in accordance with the instruction manual, may cause harmful interference to radio communications.
Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to
correct the interference at his own expense.

Summary of Contents for UCC5390SCD

Page 1: ... Contents 1 Introduction 3 2 General Overview 3 3 Electrical Specifications 5 4 Detailed Description 5 5 Test Summary 8 6 Power Up Capturing Waveforms and Power Down 11 7 Bias Supply Performance 21 8 Bill of Materials 24 9 Layout Diagrams 25 10 References 27 List of Figures 1 UCC5390SCDEVM 010 Functional Block Diagram 3 2 UCC5390SCDEVM 010 Board Image 4 3 UCC5390SCDEVM 010 Electrical Schematic 6 4...

Page 2: ...s 22 17 Bias Supply Secondary Side Switching Waveforms 23 18 Top Solder Mask 25 19 Top Layer 25 20 Bottom Layer 25 21 Bottom Solder Mask 26 22 Mechanical Dimensions 26 23 Assembly Drawings 27 List of Tables 1 Connection Descriptions 5 2 UCC5390SCDEVM 010 Electrical Specifications 5 3 Bias Voltage Configurations 7 4 Two Channel Function Generator Settings 9 5 Initial Oscilloscope Settings 10 6 Bill...

Page 3: ...or single or split rail drive voltage from 11 V to 33 V covering a wide range of Si and SiC FETs and IGBTs Compact form factor 1 5 0 83 0 3 and embedded footprints for TO 220 and TO 247 power device packages allow for easy direct connection to FETs or IGBTs in the power system for comprehensive performance evaluation 2 General Overview The UCC5390SCDEVM 010 device uses a 17 A split output driver U...

Page 4: ...nverted and isolated through a high frequency transformer to provide bias voltage from 11 V up to 33 V range to the secondary isolated side of the driver Bias supply is an unregulated DC DC transformer so the variation of primary voltage directly impacts the secondary side voltage Therefore TI recommends an external voltage source regulated within 5 to 10 for this design The driver has two inputs ...

Page 5: ... FET in TO 220 or TO 247 package 3 Electrical Specifications Table 2 shows the electrical parameters of the UCC5390SCDEVM 010 Table 2 UCC5390SCDEVM 010 Electrical Specifications PARAMETER TEST CONDITIONS MIN NOM MAX UNIT INPUT CONDITIONS Primary input supply voltage Vcc1 3 5 5 V Input signal rising threshold 0 7 Vcc1 Input signal falling threshold 0 3 Vcc1 OUTPUT CONDITIONS Gate drive voltage Depe...

Page 6: ... Incorporated UCC5390SCD With Isolated Bias Supply 4 1 Schematics By default the EVM is configured for drive pulse outputs 18 V to turn ON and 4 V to turn OFF when a 3 3 V supply voltage is applied to the input Different settings are possible described as follows The configuration procedure is described based on the schematic shown in Figure 3 Figure 3 UCC5390SCDEVM 010 Electrical Schematic ...

Page 7: ...th both IGBT and MOSFET based power systems FET selection does not impact the board maximum power The UCC5390S device limits the power dissipated by the board 4 4 Bias Supply Circuit and Setting Description By default the bias supply outputs are set for 18 V turn ON voltage and 4V turn OFF voltage The output split rail is provided by Zener diode D5 resistor R5 and capacitors C6 and C11 with jumper...

Page 8: ...s CAUTION Caution Warning Hot surface contact may cause burns Do not touch HOT SURFACE Precautions when operating HIGH VOLTAGE Danger High voltage The UCC53x0 device has an isolation boundary but does not have safety rated reinforced isolation If you apply high voltage to this board all terminals should be considered high voltage Electric shock is possible when connecting the board to live wire Th...

Page 9: ...oscope Oscilloscope 500 MHz or higher with four channels for example Tektronix DPO7104 5 3 5 Oscilloscope Probes At least 500 MHz bandwidth passive voltage probe for example Tektronix P6139A Two at least 200 MHz bandwidth 1000 V common mode differential voltage probes for example Tektronix THDP020 At least 50 MHz bandwidth current sense probe for example Tektronix TCP202 5 3 6 Digital Multi Meters...

Page 10: ...width Probe Coupling Vertical Scale Horizontal Scale Measured Waveforms Channel 1 50 MHz TCP202 DC 2 A div 2 µs div Inductor current Channel 2 200 MHz THDP020 DC 10 V div 2 µs div Vgs upper FET Channel 3 200 MHz THDP020 DC 200 V div 2 µs div Vds lower FET Channel 4 500 MHz P6139A DC 10 V div 2 µs div Vgs lower FET 5 3 10 Bench Setup This EVM is designed to ensure easy and close connection to the p...

Page 11: ...ogies that fit their projects and applications The following is the test procedure recommended for this test setup 6 Power Up Capturing Waveforms and Power Down 1 Before beginning the power up test procedure verify the connections in Figure 5 and the function generator and oscilloscope settings 2 Connect the function generator outputs to the EVM inputs using the BNC feed thru terminators Follow al...

Page 12: ...ore the rising and falling edges of the phase node Vds of lower FET by changing horizontal scale to 100 ns div as it is shown in Figure 10 and Figure 11 Verify that at 0 A load both edges are under soft switching with minimum ringing 6 Return to the initial horizontal scale 2 µs div 7 Gradually increase the load current up to 1 0 A The waveforms should look similar to Figure 9 Explore the rising a...

Page 13: ...17 Revised February 2018 Submit Documentation Feedback Copyright 2017 2018 Texas Instruments Incorporated UCC5390SCD With Isolated Bias Supply 12 Reduce the voltage of the low voltage supply down to 0 A Power down is complete Figure 7 Expanded Gate Source Drive Voltage Rise Time ...

Page 14: ...er Down www ti com 14 SLLU282A December 2017 Revised February 2018 Submit Documentation Feedback Copyright 2017 2018 Texas Instruments Incorporated UCC5390SCD With Isolated Bias Supply Figure 8 Expanded Gate Source Drive Voltage Fall Time ...

Page 15: ...cember 2017 Revised February 2018 Submit Documentation Feedback Copyright 2017 2018 Texas Instruments Incorporated UCC5390SCD With Isolated Bias Supply Figure 9 Inductor Current Red Drain Source Pink and Gate Source Drive Voltages Blue and Green at 800 V Input 0 A Output ...

Page 16: ...Down www ti com 16 SLLU282A December 2017 Revised February 2018 Submit Documentation Feedback Copyright 2017 2018 Texas Instruments Incorporated UCC5390SCD With Isolated Bias Supply Figure 10 Expanded Soft Switching Waveforms During Vds Rise ...

Page 17: ... and Power Down 17 SLLU282A December 2017 Revised February 2018 Submit Documentation Feedback Copyright 2017 2018 Texas Instruments Incorporated UCC5390SCD With Isolated Bias Supply Figure 11 Expanded Soft Switching Waveforms During Vds Fall ...

Page 18: ...mber 2017 Revised February 2018 Submit Documentation Feedback Copyright 2017 2018 Texas Instruments Incorporated UCC5390SCD With Isolated Bias Supply Figure 12 Inductor Current Red Drain Source Pink and Gate Source Drive Voltages Blue and Green at 800 V Input 1 0 A Output ...

Page 19: ...ower Down 19 SLLU282A December 2017 Revised February 2018 Submit Documentation Feedback Copyright 2017 2018 Texas Instruments Incorporated UCC5390SCD With Isolated Bias Supply Figure 13 Expanded Hard 71 V per ns Switching Waveforms During Vds Rise ...

Page 20: ...w ti com 20 SLLU282A December 2017 Revised February 2018 Submit Documentation Feedback Copyright 2017 2018 Texas Instruments Incorporated UCC5390SCD With Isolated Bias Supply Figure 14 Expanded Soft 3 4 V per ns Switching Waveforms During Vds Fall ...

Page 21: ...90SCD With Isolated Bias Supply 7 Bias Supply Performance This section shows the bias supply efficiency voltage regulation and switching waveforms at different configurations These measurements have been fulfilled only with the bias supply components populated onboard to avoid the impact of the driver circuit Figure 15 Bias Supply Efficiency at Different Configurations ...

Page 22: ... com 22 SLLU282A December 2017 Revised February 2018 Submit Documentation Feedback Copyright 2017 2018 Texas Instruments Incorporated UCC5390SCD With Isolated Bias Supply Figure 16 Bias Supply Regulation at Different Configurations ...

Page 23: ...rmance 23 SLLU282A December 2017 Revised February 2018 Submit Documentation Feedback Copyright 2017 2018 Texas Instruments Incorporated UCC5390SCD With Isolated Bias Supply Figure 17 Bias Supply Secondary Side Switching Waveforms ...

Page 24: ... Wurth Electronic C5 1 100 pF 0603 0603ZC102KAT2A AVX Capacitor ceramic 1 PF 10 V 10 X7R 0603 885012206008 Wurth Electronic D5 1 4 3 V SOD 523 BZT52C4V3T 7 Diodes Inc Diode Zenner 4 3 V 300 mW SOD 523 D1 D2 D3 D4 4 40 V SOD 523 B0540WS 7 Diodes Inc Diode Schottky 40 V 0 5 A SOD 323 J1 1 TSW 104 08 G S RA Samtec Header 100 mill 4 1 Gold R A TH 61300411021 Wurth Electronic Q1 N P Footprint only C2M1...

Page 25: ...December 2017 Revised February 2018 Submit Documentation Feedback Copyright 2017 2018 Texas Instruments Incorporated UCC5390SCD With Isolated Bias Supply 9 Layout Diagrams Figure 18 Top Solder Mask Figure 19 Top Layer Figure 20 Bottom Layer ...

Page 26: ... 26 SLLU282A December 2017 Revised February 2018 Submit Documentation Feedback Copyright 2017 2018 Texas Instruments Incorporated UCC5390SCD With Isolated Bias Supply Figure 21 Bottom Solder Mask Figure 22 Mechanical Dimensions ...

Page 27: ... February 2018 Submit Documentation Feedback Copyright 2017 2018 Texas Instruments Incorporated UCC5390SCD With Isolated Bias Supply Figure 23 Assembly Drawings 10 References Texas Instruments UCC5390 Product Folder Texas Instruments SN6505B Product Folder ...

Page 28: ...ory NOTE Page numbers for previous revisions may differ from page numbers in the current version Changes from Original December 2017 to A Revision Page Changed Expanded Hard 71 V per ns Switching Waveforms During 3 4 V per ns Vds Fall image to Expanded Soft 3 4 V per ns Switching Waveforms During Vds Fall image 20 Added alternate part number and alternate manufacturer columns to BOM 24 ...

Page 29: ...y set forth above or credit User s account for such EVM TI s liability under this warranty shall be limited to EVMs that are returned during the warranty period to the address designated by TI and that are determined by TI not to conform to such warranty If TI elects to repair or replace such EVM TI shall have a reasonable time to repair such EVM or provide replacements Repaired EVMs shall be warr...

Page 30: ...the user guide with the maximum permissible gain and required antenna impedance for each antenna type indicated Antenna types not included in this list having a gain greater than the maximum gain indicated for that type are strictly prohibited for use with this device Concernant les EVMs avec antennes détachables Conformément à la réglementation d Industrie Canada le présent émetteur radio peut fo...

Page 31: ...ed loads Any loads applied outside of the specified output range may also result in unintended and or inaccurate operation and or possible permanent damage to the EVM and or interface electronics Please consult the EVM user guide prior to connecting any load to the EVM output If there is uncertainty as to the load specification please contact a TI field representative During normal operation even ...

Page 32: ...COST OF REMOVAL OR REINSTALLATION ANCILLARY COSTS TO THE PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES RETESTING OUTSIDE COMPUTER TIME LABOR COSTS LOSS OF GOODWILL LOSS OF PROFITS LOSS OF SAVINGS LOSS OF USE LOSS OF DATA OR BUSINESS INTERRUPTION NO CLAIM SUIT OR ACTION SHALL BE BROUGHT AGAINST TI MORE THAN TWELVE 12 MONTHS AFTER THE EVENT THAT GAVE RISE TO THE CAUSE OF ACTION HAS OCCURRED 8 2 Specif...

Page 33: ... TI Resource NO OTHER LICENSE EXPRESS OR IMPLIED BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN including but not limited to any patent right copyright mask work right or other intellectual property right relating to any combination machine or process in which TI product...

Page 34: ...Mouser Electronics Authorized Distributor Click to View Pricing Inventory Delivery Lifecycle Information Texas Instruments UCC5390SCDEVM 010 ...

Reviews: