background image

IMPORTANT NOTICE AND DISCLAIMER

TI

 

PROVIDES

 

TECHNICAL

 

AND

 

RELIABILITY

 

DATA

 

(INCLUDING

 

DATASHEETS),

 

DESIGN

 

RESOURCES

 

(INCLUDING

 

REFERENCE

 

DESIGNS),

 

APPLICATION

 

OR

 

OTHER

 

DESIGN

 

ADVICE,

 

WEB

 

TOOLS,

 

SAFETY

 

INFORMATION,

 

AND

 

OTHER

 

RESOURCES

 

“AS

 

IS”

 

AND

 

WITH

 

ALL

 

FAULTS,

 

AND

 

DISCLAIMS

 

ALL

 

WARRANTIES,

 

EXPRESS

 

AND

 

IMPLIED,

 

INCLUDING

 

WITHOUT

 

LIMITATION

 

ANY

 

IMPLIED

 

WARRANTIES

 

OF

 

MERCHANTABILITY,

 

FITNESS

 

FOR

 

A

 

PARTICULAR

 

PURPOSE

 

OR

 

NON-INFRINGEMENT

 

OF

 

THIRD

 

PARTY

 

INTELLECTUAL

 

PROPERTY

 

RIGHTS.

These

 

resources

 

are

 

intended

 

for

 

skilled

 

developers

 

designing

 

with

 

TI

 

products.

 

You

 

are

 

solely

 

responsible

 

for

 

(1)

 

selecting

 

the

 

appropriate

 

TI

 

products

 

for

 

your

 

application,

 

(2)

 

designing,

 

validating

 

and

 

testing

 

your

 

application,

 

and

 

(3)

 

ensuring

 

your

 

application

 

meets

 

applicable

 

standards,

 

and

 

any

 

other

 

safety,

 

security,

 

or

 

other

 

requirements.

 

These

 

resources

 

are

 

subject

 

to

 

change

 

without

 

notice.

 

TI

 

grants

 

you

 

permission

 

to

 

use

 

these

 

resources

 

only

 

for

 

development

 

of

 

an

 

application

 

that

 

uses

 

the

 

TI

 

products

 

described

 

in

 

the

 

resource.

 

Other

 

reproduction

 

and

 

display

 

of

 

these

 

resources

 

is

 

prohibited.

 

No

 

license

 

is

 

granted

 

to

 

any

 

other

 

TI

 

intellectual

 

property

 

right

 

or

 

to

 

any

 

third

 

party

 

intellectual

 

property

 

right.

 

TI

 

disclaims

 

responsibility

 

for,

 

and

 

you

 

will

 

fully

 

indemnify

 

TI

 

and

 

its

 

representatives

 

against,

 

any

 

claims,

 

damages,

 

costs,

 

losses,

 

and

 

liabilities

 

arising

 

out

 

of

 

your

 

use

 

of

 

these

 

resources.

TI’s

 

products

 

are

 

provided

 

subject

 

to

 

TI’s

 

Terms

 

of

 

Sale

 

(

www.ti.com/legal/termsofsale.html

)

 

or

 

other

 

applicable

 

terms

 

available

 

either

 

on

 

ti.com

 

or

 

provided

 

in

 

conjunction

 

with

 

such

 

TI

 

products.

 

TI’s

 

provision

 

of

 

these

 

resources

 

does

 

not

 

expand

 

or

 

otherwise

 

alter

 

TI’s

 

applicable

 

warranties

 

or

 

warranty

 

disclaimers

 

for

 

TI

 

products.

Mailing

 

Address:

 

Texas

 

Instruments,

 

Post

 

Office

 

Box

 

655303,

 

Dallas,

 

Texas

 

75265

Copyright

 

©

 2020

,

 

Texas

 

Instruments

 

Incorporated

Summary of Contents for UCC27288EVM

Page 1: ...th External Bootstrap Diode 7 7 Typical Performance Waveforms CL 1800 pF 8 7 1 Propagation Delays 8 8 Schematic 9 9 Layout Diagrams 10 10 Bill of Materials 13 List of Figures 1 Bench Setup Diagram and Configuration 5 2 Example Input and Output Waveforms Green and Magenta are PWM Inputs Yellow and Blue are Driver Outputs 6 3 HI and HO Propagation Delay Waveforms Green and Magenta are PWM Inputs Yel...

Page 2: ... side and low side MOSFETs at the same time enhancing robustness of the power train design 2 Description The EVM is developed in such a way that the UCC27288 driver performance can be evaluated and compared to data sheet parameters or externally connected to power devices with provisions for source and sink gate resistance flexibility The UCC27288EVM evaluation board uses surface mount test points...

Page 3: ...M LI Low side input pin LI ENA_IN Enable input to EVM Connect to GND to disable driver VHB HB pin voltage HO LD High side output at capacitive load HO High side output pin HS High side driver return pin Usually connected to high side MOSFET source LO LD Low side output at capacitive load LO Low side output pin 3 Electrical Specifications For the full range of recommended operating specifications a...

Page 4: ...for example Tektronics AFG3252 4 2 3 DMM DMM with voltage and current above 25 V and 1 A for example Fluke 187 4 2 4 Oscilloscope Four channel oscilloscope with 500 MHz or greater bandwidth for example DPO 7054 4 3 Equipment Setup 4 3 1 DC Power Supply Settings DC power supply 1 Voltage setting 12 V Current limit 0 05 A 4 3 2 Digital Multi Meter Settings DMM 1 DC current measurement auto range Exp...

Page 5: ...ction generator and oscilloscope connections Use the following connection procedure refer to Figure 1 First make sure the output of the function generator and power supplies are disabled before connection Apply function generator channel A on HI_IN GND Apply function generator channel B on LI_IN GND Power supply 1 apply positive lead to current input of DMM 1 and current output of DMM 1 to test po...

Page 6: ...oscilloscope refer to Figure 2 2 Frequency measurement should be 100 kHz 5 kHz or equal to the programmed function generator frequency 3 DMM 1 should display around 4 6 mA 2 mA with the default load capacitance of 1 0 nF For more information about operating current see the UCC27288 120 V Half Bridge Driver without Bootstrap Diode Data Sheet 5 Connect ENA_IN test point to GND test point with a jump...

Page 7: ...rap diode included the series resistor R10 is not populated This allows the user to evaluate pin compatible drivers that do not have the internal bootstrap diode which is included with the UCC27288 high side and low side driver As a general guideline when using the external bootstrap diode a resistance value of 2 2 Ω to 10 Ω is recommended Install R10 1206 size resistor for evaluation of pin compa...

Page 8: ...nd HO output on the top traces and the LI input and LO output on the bottom traces in each plot To evaluate propagation delays and rising and falling details it is recommended to have scope probe connections with short ground leads see Figure 3 and Figure 4 Figure 3 HI and HO Propagation Delay Waveforms Green and Magenta are PWM Inputs Yellow and Blue are Driver Outputs Figure 4 LI and LO Propagat...

Page 9: ...edback Copyright 2020 Texas Instruments Incorporated Using the UCC27288EVM 8 Schematic Figure 5 shows the UCC27288EVM schematic diagram Figure 5 UCC27288EVM Schematic U2 is not installed since it is an alternate driver IC used on a different board assembly variation ...

Page 10: ...ne 2020 Submit Documentation Feedback Copyright 2020 Texas Instruments Incorporated Using the UCC27288EVM 9 Layout Diagrams Figure 6 through Figure 11 show the PCB layout information for the UCC27288EVM Figure 6 Top Overlay Figure 7 Top Layer ...

Page 11: ...C5 U2 R10 C11 www ti com Layout Diagrams 11 SLUUCB3 June 2020 Submit Documentation Feedback Copyright 2020 Texas Instruments Incorporated Using the UCC27288EVM Figure 8 Bottom Layer Figure 9 Bottom Overlay ...

Page 12: ...Layout Diagrams www ti com 12 SLUUCB3 June 2020 Submit Documentation Feedback Copyright 2020 Texas Instruments Incorporated Using the UCC27288EVM Figure 10 Top Image Figure 11 Bottom Image ...

Page 13: ...G NP0 0603 C0603C100J5GACTU Kemet D1 D2 2 Diode Schottky 30 V 1 A AEC Q101 MicroSMP MSS1P3L M3 89A Vishay Semiconductor D3 1 Diode Ultrafast 200 V 1 A SMA ES1D 13 F Diodes Inc H1 H2 H3 H4 4 Bumpon Hemisphere 0 44 X 0 20 Clear SJ 5303 CLEAR 3M LBL1 1 Thermal Transfer Printable Labels 0 650 W x 0 200 H 10 000 per roll THT 14 423 10 Brady R1 R2 2 RES 2 2 5 0 125 W 0805 CRCW08052R20JNEA Vishay Dale R3...

Page 14: ...other than TI b the nonconformity resulted from User s design specifications or instructions for such EVMs or improper system design or c User has not paid on time Testing and other quality control techniques are used to the extent TI deems necessary TI does not test all parameters of each EVM User s claims against TI under this Section 2 are void if User fails to notify TI of any apparent defects...

Page 15: ... These limits are designed to provide reasonable protection against harmful interference in a residential installation This equipment generates uses and can radiate radio frequency energy and if not installed and used in accordance with the instructions may cause harmful interference to radio communications However there is no guarantee that interference will not occur in a particular installation...

Page 16: ...y for convenience and should be verified by User 1 Use EVMs in a shielded room or any other test facility as defined in the notification 173 issued by Ministry of Internal Affairs and Communications on March 28 2006 based on Sub section 1 1 of Article 6 of the Ministry s Rule for Enforcement of Radio Law of Japan 2 Use EVMs only after User obtains the license of Test Radio Station as provided in R...

Page 17: ... any interfaces electronic and or mechanical between the EVM and any human body are designed with suitable isolation and means to safely limit accessible leakage currents to minimize the risk of electrical shock hazard User assumes all responsibility and liability for any improper or unsafe handling or use of the EVM by User or its employees affiliates contractors or designees 4 4 User assumes all...

Page 18: ...OR DAMAGES ARE CLAIMED THE EXISTENCE OF MORE THAN ONE CLAIM SHALL NOT ENLARGE OR EXTEND THIS LIMIT 9 Return Policy Except as otherwise provided TI does not offer any refunds returns or exchanges Furthermore no return of EVM s will be accepted if the package has been opened and no return of the EVM s will be accepted if they are damaged or otherwise not in a resalable condition If User feels it has...

Page 19: ...se resources are subject to change without notice TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource Other reproduction and display of these resources is prohibited No license is granted to any other TI intellectual property right or to any third party intellectual property right TI disclaims responsibility for...

Reviews: