background image

Test Procedure

www.ti.com

8

SLUUBG3A – July 2016 – Revised August 2016

Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

TPS548D21EVM-784, 40-A Single Synchronous Step-Down Converter With
Full Differential Sense

8

Test Procedure

8.1

Line and Load Regulation Measurement Procedure

1. Connect VOUT to J3 and VOUT_GND to J5

Figure 2

.

2. Ensure that the electronic load is set to draw 0 A

DC

.

3. Ensure the jumper provided on the EVM shorts on J4 before V

IN

is applied

4. Connect VIN to J1 and VIN_GND to J2

Figure 2

.

5. Increase V

IN

from 0 V to 12 V using the digital multimeter to measure input voltage.

6. Connect the external voltage source to TP14. Note: Make sure the external source is noise free.

7. Increase the external voltage source from 0 V to 0.9 V.

8. Remove the jumper on J4 to enable the controller.

9. Use the other digital multimeter or the oscilloscope to measure output voltage V

OUT

at TP2 and TP10.

Table 3. List of Test Points for Line and Load Measurements

Test Point

Node Name

Description

TP2

LocS+

Sense VOUT + locally across C5. Use for efficiency and ripple measurements

TP10

LocS-

Sense VOUT - locally across C5. Use for efficiency and ripple measurements

TP4

PVIN

Sense VIN + across C10

TP13

PGND

Sense VIN - across C10

10. Vary the load from 0 A

DC

to maximum rated output 40 A

DC

. V

OUT

must remain in regulation as defined

in

Table 1

.

11. Vary V

IN

from 5 V to 16 V. V

OUT

must remain in regulation as defined in

Table 1

.

12. Decrease the load to 0 A.

13. Put the jumper back on J4 to disable the converter.

14. Decrease V

IN

to 0 V or turn off the supply.

15. Decrease the external voltage source to 0 V, or turn off the supply.

8.2

Efficiency

To measure the efficiency of the power train on the EVM, it is important to measure the voltages at the
correct location. This is necessary because otherwise the measurements will include losses in efficiency
that are not related to the power train itself. Losses incurred by the voltage drop in the copper traces and
in the input and output connectors are not related to the efficiency of the power train, and they must not be
included in efficiency measurements.

Table 4. List of Test Points for Efficiency Measurements

Test Point

Node Name

Description

TP2

LocS+

Sense VOUT + locally across C5. Use for efficiency and ripple measurements

TP10

LocS-

Sense VOUT - locally across C5. Use for efficiency and ripple measurements

TP4

PVIN

Sense VIN + across C10

TP13

PGND

Sense VIN - across C10

Input current can be measured at any point in the input wires, and output current can be measured
anywhere in the output wires of the output being measured. Using these measurement points result in
efficiency measurements that do not include losses due to the connectors and PCB traces.

Summary of Contents for TPS548D21EVM-784

Page 1: ...Introduction 2 2 Description 2 2 1 Typical End User Applications 2 2 2 EVM Features 2 3 EVM Electrical Performance Specifications 3 4 Schematic 4 5 Test Equipment 5 6 PWR 784EVM 6 7 List of Test Points Jumpers and Switch 7 8 Test Procedure 8 8 1 Line and Load Regulation Measurement Procedure 8 8 2 Efficiency 8 8 3 Equipment Shutdown 9 9 Performance Data and Typical Characteristic Curves 9 9 1 Effi...

Page 2: ...25 PWR 784EVM Bottom Overlay Layer Top View 21 List of Tables 1 PWR 784EVM Electrical Performance Specifications 3 2 Test Point Functions 7 3 List of Test Points for Line and Load Measurements 8 4 List of Test Points for Efficiency Measurements 8 5 PWR784 List of Materials 22 1 Introduction The PWR784EVM evaluation module uses the TPS548D21 device The TPS548D21 is a highly integrated synchronous b...

Page 3: ...haracteristics Voltage range VIN tied to VDD 5 12 16 V Maximum input current VIN 12 V IO 40 A 12 A No load input current VIN 12 V IO 0 A 60 mA Output Characteristics VOUT Output voltage Output current 10 A 1 V IOUT Output load current IOUT min to IOUT max 0 40 A Output voltage regulation Line regulation input voltage 5 V to 16 V 0 5 Load regulation output current 0 A to IOUT max 0 5 VOUT Output vo...

Page 4: ... SW 8 SW 9 SW 10 SW 11 SW 12 PGND 13 PGND 14 PGND 15 PGND 16 PGND 17 PGND 18 PGND 19 PGND 20 PVIN 21 PVIN 22 PVIN 23 PVIN 24 PVIN 25 PVIN 26 NC 27 VDD 28 DRGND 29 AGND 30 BP 31 FSEL 32 VSEL 33 MODE 34 PGOOD 35 ILIM 36 REFIN_TRK 37 RSN 38 RSP 39 VOSNS 40 PAD 41 U1 TPS548D21RVF 22uF C17 DNP 22uF C18 22uF C19 22µF C20 TP6 TP11 0 R17 DNP 0 R18 DNP 1 00 R1 0 R10 1 10k R8 1 50k R5 DNP NT1 Net Tie NT2 Ne...

Page 5: ...pable of 40 A at voltages as low as 0 6 V Oscilloscope An oscilloscope is recommended for measuring output noise and ripple Output ripple must be measured using a tip and barrel method or better as shown in Figure 3 The scope must be adjusted to 20 MHz bandwidth AC coupling at 50 mV division and must be set to 1 µs division Fan During prolonged operation at high loads it may be necessary to provid...

Page 6: ...com 6 SLUUBG3A July 2016 Revised August 2016 Submit Documentation Feedback Copyright 2016 Texas Instruments Incorporated TPS548D21EVM 784 40 A Single Synchronous Step Down Converter With Full Differential Sense 6 PWR 784EVM Figure 2 PWR 784EVM Overview Figure 3 Tip and Barrel Measurement ...

Page 7: ...e sense TP11 T H loop RemS Remote sense TP4 T H loop PVIN Sense VIN across C10 TP13 T H loop PGND Sense VIN across C10 TP1 T H loop VDD Supplies the internal circuitry TP17 T H loop FSEL Monitor the FSEL external resistor divider ratio during initial power up TP15 T H loop VSEL Monitor the VSEL external resistor divider ratio during initial power up TP9 T H loop BP LDO output TP8 T H loop PG Power...

Page 8: ...ad from 0 ADC to maximum rated output 40 ADC VOUT must remain in regulation as defined in Table 1 11 Vary VIN from 5 V to 16 V VOUT must remain in regulation as defined in Table 1 12 Decrease the load to 0 A 13 Put the jumper back on J4 to disable the converter 14 Decrease VIN to 0 V or turn off the supply 15 Decrease the external voltage source to 0 V or turn off the supply 8 2 Efficiency To meas...

Page 9: ...ments Incorporated TPS548D21EVM 784 40 A Single Synchronous Step Down Converter With Full Differential Sense 8 3 Equipment Shutdown 1 Reduce the load current to 0 A 2 Reduce input voltage to 0 V 3 Shut down the external fan if in use 4 Shut down equipment 9 Performance Data and Typical Characteristic Curves Figure 4 through Figure 15 present typical performance curves for the PWR 784EVM SPACE 9 1 ...

Page 10: ...ww ti com 10 SLUUBG3A July 2016 Revised August 2016 Submit Documentation Feedback Copyright 2016 Texas Instruments Incorporated TPS548D21EVM 784 40 A Single Synchronous Step Down Converter With Full Differential Sense 9 3 Line Regulation Figure 6 Line Regulation of 1 V Output Figure 7 Real Tracking POD 256 µs PGD 8 ms ...

Page 11: ...1 SLUUBG3A July 2016 Revised August 2016 Submit Documentation Feedback Copyright 2016 Texas Instruments Incorporated TPS548D21EVM 784 40 A Single Synchronous Step Down Converter With Full Differential Sense Figure 8 Sequencing POD 256 µs PGD 8 ms Ext SS Pulldown PG ...

Page 12: ...sed August 2016 Submit Documentation Feedback Copyright 2016 Texas Instruments Incorporated TPS548D21EVM 784 40 A Single Synchronous Step Down Converter With Full Differential Sense 9 4 Transient Response Figure 9 Transient Response of 1 V Output at 12 VIN Transient is 8 A to 32 A 2 5 A µs ...

Page 13: ...umentation Feedback Copyright 2016 Texas Instruments Incorporated TPS548D21EVM 784 40 A Single Synchronous Step Down Converter With Full Differential Sense 9 5 Output Ripple Figure 10 Output Ripple and SW Node of 1 V Output at 12 VIN 0 A Output Figure 11 Output Ripple and SW Node of 1 V Output at 12 VIN 40 A Output ...

Page 14: ...umentation Feedback Copyright 2016 Texas Instruments Incorporated TPS548D21EVM 784 40 A Single Synchronous Step Down Converter With Full Differential Sense 9 6 Control On Figure 12 Start up from Control 1 V Output at 12 VIN 40 A Output Figure 13 0 5 V Pre bias start up from Control 1 V Output at 12 VIN 40 A Output ...

Page 15: ...uly 2016 Revised August 2016 Submit Documentation Feedback Copyright 2016 Texas Instruments Incorporated TPS548D21EVM 784 40 A Single Synchronous Step Down Converter With Full Differential Sense 9 7 Control Off Figure 14 Soft Stop from Control 1 V Output at 12 VIN 40 A Output ...

Page 16: ... July 2016 Revised August 2016 Submit Documentation Feedback Copyright 2016 Texas Instruments Incorporated TPS548D21EVM 784 40 A Single Synchronous Step Down Converter With Full Differential Sense 9 8 Thermal Image Figure 15 Thermal Image at 1 V Output at 12 VIN 40 A Output ...

Page 17: ...48D21EVM 784 40 A Single Synchronous Step Down Converter With Full Differential Sense 10 EVM Assembly Drawing and PCB Layout Figure 16 through Figure 23 show the design of the PWR 784EVM printed circuit board PCB The PWR 784EVM has a 2 oz copper finish for all layers Figure 16 PWR 784EVM Top Layer Assembly Drawing Top View Figure 17 PWR 784EVM Top Solder Mask Top View ...

Page 18: ... Revised August 2016 Submit Documentation Feedback Copyright 2016 Texas Instruments Incorporated TPS548D21EVM 784 40 A Single Synchronous Step Down Converter With Full Differential Sense Figure 18 PWR 784EVM Top Layer Top View Figure 19 PWR 784EVM Inner Layer 1 Top View ...

Page 19: ...evised August 2016 Submit Documentation Feedback Copyright 2016 Texas Instruments Incorporated TPS548D21EVM 784 40 A Single Synchronous Step Down Converter With Full Differential Sense Figure 20 PWR 784EVM Inner Layer 2 Top View Figure 21 PWR 784EVM Inner Layer 3 Top View ...

Page 20: ...evised August 2016 Submit Documentation Feedback Copyright 2016 Texas Instruments Incorporated TPS548D21EVM 784 40 A Single Synchronous Step Down Converter With Full Differential Sense Figure 22 PWR 784EVM Inner Layer 4 Top View Figure 23 PWR 784EVM Bottom Layer Top View ...

Page 21: ... August 2016 Submit Documentation Feedback Copyright 2016 Texas Instruments Incorporated TPS548D21EVM 784 40 A Single Synchronous Step Down Converter With Full Differential Sense Figure 24 PWR 784EVM Bottom Solder Mask Top View Figure 25 PWR 784EVM Bottom Overlay Layer Top View ...

Page 22: ...BLOCK 5 08MM VERT 2POS TH TERM_BLK 2pos 5 08mm ED120 2DS On Shore Technology J4 1 Header 100mil 2x1 Tin TH Header 2 PIN 100mil Tin PEC02SAAN Sullins Connector Solutions L1 1 250nH Inductor Shielded Drum Core Ferrite 250 nH 50 A 0 000165 ohm SMD 12 5x13mm 744309025 Wurth Elektronik LBL1 1 Thermal Transfer Printable Labels 0 650 W x 0 200 H 10 000 per roll PCB Label 0 650 H x 0 200 W THT 14 423 10 B...

Page 23: ...71H104KA93D Murata C32 0 6800pF CAP CERM 6800 pF 50 V 10 X7R 0603 0603 GRM188R71H682KA01D Murata C34 C44 0 1uF CAP CERM 1 µF 16 V 10 X5R 0603 0603 C0603C105K4PACTU Kemet C36 0 1000pF CAP CERM 1000 pF 25 V 10 X7R 0603 0603 GRM188R71E102KA01D Murata C37 0 470uF CAP Tantalum Polymer 470 µF 2 5 V 20 0 006 ohm 7 3x2 8x4 3mm SMD 7 3x2 8x4 3mm 2R5TPF470M6L Panasonic FID1 FID2 FID3 FID4 FID5 FID6 0 Fiduci...

Page 24: ...right 2016 Texas Instruments Incorporated Revision History Revision History NOTE Page numbers for previous revisions may differ from page numbers in the current version Changes from Original July 2016 to A Revision Page Added and edited steps in the Line and Load Regulation Measurement Procedure section 8 ...

Page 25: ...ring the warranty period to the address designated by TI and that are determined by TI not to conform to such warranty If TI elects to repair or replace such EVM TI shall have a reasonable time to repair such EVM or provide replacements Repaired EVMs shall be warranted for the remainder of the original warranty period Replaced EVMs shall be warranted for a new full ninety 90 day warranty period 3 ...

Page 26: ... by Industry Canada to operate with the antenna types listed in the user guide with the maximum permissible gain and required antenna impedance for each antenna type indicated Antenna types not included in this list having a gain greater than the maximum gain indicated for that type are strictly prohibited for use with this device Concernant les EVMs avec antennes détachables Conformément à la rég...

Page 27: ... connecting any load to the EVM output If there is uncertainty as to the load specification please contact a TI field representative During normal operation even with the inputs and outputs kept within the specified allowable ranges some circuit components may have elevated case temperatures These components include but are not limited to linear regulators switching transistors pass transistors cu...

Page 28: ...F REMOVAL OR REINSTALLATION ANCILLARY COSTS TO THE PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES RETESTING OUTSIDE COMPUTER TIME LABOR COSTS LOSS OF GOODWILL LOSS OF PROFITS LOSS OF SAVINGS LOSS OF USE LOSS OF DATA OR BUSINESS INTERRUPTION NO CLAIM SUIT OR ACTION SHALL BE BROUGHT AGAINST TI MORE THAN ONE YEAR AFTER THE RELATED CAUSE OF ACTION HAS OCCURRED 8 2 Specific Limitations IN NO EVENT SHALL T...

Page 29: ...esponsible for compliance with all legal regulatory and safety related requirements concerning its products and any use of TI components in its applications notwithstanding any applications related information or support that may be provided by TI Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failur...

Reviews: