background image

EVALUATION BOARD/KIT/MODULE (EVM)

WARNINGS, RESTRICTIONS AND DISCLAIMERS

For Feasibility Evaluation Only, in Laboratory/Development Environments. Unless otherwise indicated, this EVM is not a finished
electrical equipment and not intended for consumer use. It is intended solely for use for preliminary feasibility evaluation in
laboratory/development environments by technically qualified electronics experts who are familiar with the dangers and application risks
associated with handling electrical mechanical components, systems and subsystems. It should not be used as all or part of a finished end
product.

Your Sole Responsibility and Risk. You acknowledge, represent and agree that:

1.

You have unique knowledge concerning Federal, State and local regulatory requirements (including but not limited to Food and Drug
Administration regulations, if applicable) which relate to your products and which relate to your use (and/or that of your employees,
affiliates, contractors or designees) of the EVM for evaluation, testing and other purposes.

2.

You have full and exclusive responsibility to assure the safety and compliance of your products with all such laws and other applicable
regulatory requirements, and also to assure the safety of any activities to be conducted by you and/or your employees, affiliates,
contractors or designees, using the EVM. Further, you are responsible to assure that any interfaces (electronic and/or mechanical)
between the EVM and any human body are designed with suitable isolation and means to safely limit accessible leakage currents to
minimize the risk of electrical shock hazard.

3.

You will employ reasonable safeguards to ensure that your use of the EVM will not result in any property damage, injury or death, even
if the EVM should fail to perform as described or expected.

4.

You will take care of proper disposal and recycling of the EVM’s electronic components and packing materials.

Certain Instructions. It is important to operate this EVM within TI’s recommended specifications and environmental considerations per the
user guidelines. Exceeding the specified EVM ratings (including but not limited to input and output voltage, current, power, and
environmental ranges) may cause property damage, personal injury or death. If there are questions concerning these ratings please contact
a TI field representative prior to connecting interface electronics including input power and intended loads. Any loads applied outside of the
specified output range may result in unintended and/or inaccurate operation and/or possible permanent damage to the EVM and/or
interface electronics. Please consult the EVM User's Guide prior to connecting any load to the EVM output. If there is uncertainty as to the
load specification, please contact a TI field representative. During normal operation, some circuit components may have case temperatures
greater than 60°C as long as the input and output are maintained at a normal ambient operating temperature. These components include
but are not limited to linear regulators, switching transistors, pass transistors, and current sense resistors which can be identified using the
EVM schematic located in the EVM User's Guide. When placing measurement probes near these devices during normal operation, please
be aware that these devices may be very warm to the touch. As with all electronic evaluation tools, only qualified personnel knowledgeable
in electronic measurement and diagnostics normally found in development environments should use these EVMs.

Agreement to Defend, Indemnify and Hold Harmless. You agree to defend, indemnify and hold TI, its licensors and their representatives
harmless from and against any and all claims, damages, losses, expenses, costs and liabilities (collectively, "Claims") arising out of or in
connection with any use of the EVM that is not in accordance with the terms of the agreement. This obligation shall apply whether Claims
arise under law of tort or contract or any other legal theory, and even if the EVM fails to perform as described or expected.

Safety-Critical or Life-Critical Applications. If you intend to evaluate the components for possible use in safety critical applications (such
as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, such as devices
which are classified as FDA Class III or similar classification, then you must specifically notify TI of such intent and enter into a separate
Assurance and Indemnity Agreement.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265

Copyright © 2012, Texas Instruments Incorporated

Summary of Contents for TPS53319EVM-136

Page 1: ...oad Regulation and Efficiency Measurement Procedure 8 6 2 Control Loop Gain and Phase Measurement Procedure 8 6 3 List of Test Points 8 6 4 Equipment Shutdown 9 7 Performance Data and Typical Characteristic Curves 9 7 1 Efficiency 9 7 2 Load Regulation 10 7 3 Line Regulation 10 7 4 Enable Turn on Turn off 11 7 5 Output Ripple 11 7 6 Switching Node 12 7 7 Output Transient with Auto skip mode 12 7 8...

Page 2: ...er Assembly Drawing 16 20 TPS53319EVM 136 Bottom Assembly Drawing 17 21 TPS53319EVM 136 Top Copper 18 22 TPS53319EVM 136 Layer 2 Copper 19 23 TPS53319EVM 136 Layer 3 Copper 20 24 TPS53319EVM 136 Layer 4 Copper 21 25 TPS53319EVM 136 Layer 5 Copper 22 26 TPS53319EVM 136 Bottom Layer Copper 23 List of Tables 1 TPS53319EVM 136 Electrical Performance Specifications 3 2 Switching Frequency Selection 7 3...

Page 3: ...Table 1 TPS53319EVM 136 Electrical Performance Specifications 1 PARAMETER TEST CONDITIONS MIN TYP MAX UNITS INPUT CHARACTERISTICS Voltage range VIN 8 12 20 V Maximum input current VIN 8V Io 14 A 2 874 A No load input current Vin 20V Io 0A with auto skip mode 0 7 mA OUTPUT CHARACTERISTICS Output voltage VOUT 1 5 V Output voltage regulation Line regulation Vin 8V 20V 0 1 Load regulation Vin 12V Io 0...

Page 4: ...ww ti com 3 Schematic Figure 1 TPS53319EVM 136 Schematic 4 High Efficiency 14A Synchronous Buck Converter with Eco Mode SLVU728 May 2012 Submit Documentation Feedback Copyright 2012 Texas Instruments Incorporated ...

Page 5: ... resolution 20mV division vertical resolution Test points TP2 and TP11 can be used to measure the output ripple voltage by placing the oscilloscope probe tip through TP2 and holding the ground barrel on TP11 as shown in Figure 2 Using a leaded ground connection may induce additional noise due to the large ground loop Figure 2 Tip and Barrel Measurement for Vout Ripple Recommended Wire Gauge 1 VIN ...

Page 6: ... as shown in Figure 3 2 Connect a voltmeter V1 at TP1 Vin and TP10 GND to measure the input voltage 3 Connect a current meter A1 to measure the input current Output Connections 1 Connect Load to J2 and set Load to constant resistance mode to sink 0Adc before Vin is applied 2 Connect a voltmeter V2 at TP2 Vout and TP11 GND to measure the output voltage 5 Configurations All Jumper selections should ...

Page 7: ...op 1 2 pin shorted 39 2k 0 7 2nd 3 4 pin shorted 100k 1 4 3rd 5 6 pin shorted 200k 2 8 Bottom 7 8 pin shorted 475k 5 6 5 3 Mode Selection The MODE can be set by J5 Default setting Auto Skip Table 4 MODE Selection Jumper set to MODE Selection Top 1 2 pin shorted Auto Skip Bottom 3 4 pin shorted Forced CCM 5 4 Enable Selection The controller can be enabled and disabled by J6 Default setting Jumper s...

Page 8: ...nect isolation transformer to test points marked TP6 and TP7 3 Connect input signal amplitude measurement probe channel A to TP6 Connect output signal amplitude measurement probe channel B to TP7 4 Connect ground lead of channel A and channel B to TP9 5 Inject around 20mV or less signal through the isolation transformer 6 Sweep the frequency from 100Hz to 1MHz with 10Hz or lower post filter The co...

Page 9: ...erformance Data and Typical Characteristic Curves Figure 4 through Figure 18 present typical performance curves for TPS53319EVM 136 7 1 Efficiency Figure 4 Efficiency 9 SLVU728 May 2012 High Efficiency 14A Synchronous Buck Converter with Eco Mode Submit Documentation Feedback Copyright 2012 Texas Instruments Incorporated ...

Page 10: ...w ti com 7 2 Load Regulation Figure 5 Load Regulation 7 3 Line Regulation Figure 6 Line Regulation 10 High Efficiency 14A Synchronous Buck Converter with Eco Mode SLVU728 May 2012 Submit Documentation Feedback Copyright 2012 Texas Instruments Incorporated ...

Page 11: ...nable Turn on Turn off Figure 7 Enable Turn on Figure 8 Enable Turn off 7 5 Output Ripple Figure 9 Output Ripple 11 SLVU728 May 2012 High Efficiency 14A Synchronous Buck Converter with Eco Mode Submit Documentation Feedback Copyright 2012 Texas Instruments Incorporated ...

Page 12: ...tching Node 7 7 Output Transient with Auto skip mode Figure 11 Output Transient from DCM to CCM Figure 12 Output Transient from CCM to DCM 12 High Efficiency 14A Synchronous Buck Converter with Eco Mode SLVU728 May 2012 Submit Documentation Feedback Copyright 2012 Texas Instruments Incorporated ...

Page 13: ...put Transient with FCCM mode 7 9 Output 0 75V Pre bias Turn on Figure 14 Output 0 75V Pre bias Turn on 7 10 Output Over Current and Short Circuit Protection 13 SLVU728 May 2012 High Efficiency 14A Synchronous Buck Converter with Eco Mode Submit Documentation Feedback Copyright 2012 Texas Instruments Incorporated ...

Page 14: ...ut Over Current Protection Figure 16 Output Over Voltage Protection 7 11 Bode plot Figure 17 Bode plot at 12Vin 1 5V 14A 14 High Efficiency 14A Synchronous Buck Converter with Eco Mode SLVU728 May 2012 Submit Documentation Feedback Copyright 2012 Texas Instruments Incorporated ...

Page 15: ...tic Curves 7 12 Thermal Image Figure 18 Top Board at 12Vin 1 5V 14A 25deg C amb without airflow 15 SLVU728 May 2012 High Efficiency 14A Synchronous Buck Converter with Eco Mode Submit Documentation Feedback Copyright 2012 Texas Instruments Incorporated ...

Page 16: ...how the design of the TPS53319EVM 136 printed circuit board The EVM has been designed using a 6 Layer 2 oz copper circuit board Figure 19 TPS53319EVM 136 Top Layer Assembly Drawing 16 High Efficiency 14A Synchronous Buck Converter with Eco Mode SLVU728 May 2012 Submit Documentation Feedback Copyright 2012 Texas Instruments Incorporated ...

Page 17: ...awing and PCB Layout Figure 20 TPS53319EVM 136 Bottom Assembly Drawing 17 SLVU728 May 2012 High Efficiency 14A Synchronous Buck Converter with Eco Mode Submit Documentation Feedback Copyright 2012 Texas Instruments Incorporated ...

Page 18: ...g and PCB Layout www ti com Figure 21 TPS53319EVM 136 Top Copper 18 High Efficiency 14A Synchronous Buck Converter with Eco Mode SLVU728 May 2012 Submit Documentation Feedback Copyright 2012 Texas Instruments Incorporated ...

Page 19: ...ly Drawing and PCB Layout Figure 22 TPS53319EVM 136 Layer 2 Copper 19 SLVU728 May 2012 High Efficiency 14A Synchronous Buck Converter with Eco Mode Submit Documentation Feedback Copyright 2012 Texas Instruments Incorporated ...

Page 20: ...and PCB Layout www ti com Figure 23 TPS53319EVM 136 Layer 3 Copper 20 High Efficiency 14A Synchronous Buck Converter with Eco Mode SLVU728 May 2012 Submit Documentation Feedback Copyright 2012 Texas Instruments Incorporated ...

Page 21: ...ly Drawing and PCB Layout Figure 24 TPS53319EVM 136 Layer 4 Copper 21 SLVU728 May 2012 High Efficiency 14A Synchronous Buck Converter with Eco Mode Submit Documentation Feedback Copyright 2012 Texas Instruments Incorporated ...

Page 22: ...and PCB Layout www ti com Figure 25 TPS53319EVM 136 Layer 5 Copper 22 High Efficiency 14A Synchronous Buck Converter with Eco Mode SLVU728 May 2012 Submit Documentation Feedback Copyright 2012 Texas Instruments Incorporated ...

Page 23: ...Drawing and PCB Layout Figure 26 TPS53319EVM 136 Bottom Layer Copper 23 SLVU728 May 2012 High Efficiency 14A Synchronous Buck Converter with Eco Mode Submit Documentation Feedback Copyright 2012 Texas Instruments Incorporated ...

Page 24: ...ip 14 7k 1 16W 1 0603 STD STD 1 R11 Resistor Chip 10 1 16W 1 0603 STD STD 1 R13 Resistor Chip 187k 1 16W 1 0603 STD STD 1 R14 Resistor Chip 619k 1 16W 1 0603 STD STD 1 R16 Resistor Chip 866k 1 16W 1 0603 STD STD 1 R17 Resistor Chip 309k 1 16W 1 0603 STD STD 1 R18 Resistor Chip 124k 1 16W 1 0603 STD STD 1 R19 Resistor Chip 39 2k 1 16W 1 0603 STD STD 1 R2 Resistor Chip 169k 1 16W 1 0603 STD STD 1 R2...

Page 25: ...ency energy and has not been tested for compliance with the limits of computing devices pursuant to part 15 of FCC or ICES 003 rules which are designed to provide reasonable protection against radio frequency interference Operation of the equipment may cause interference with radio communications in which case the user at his own expense will be required to take whatever measures may be required t...

Page 26: ... its gain should be so chosen that the equivalent isotropically radiated power e i r p is not more than that necessary for successful communication This radio transmitter has been approved by Industry Canada to operate with the antenna types listed in the user guide with the maximum permissible gain and required antenna impedance for each antenna type indicated Antenna types not included in this l...

Page 27: ...er you obtained the Technical Regulations Conformity Certification as provided in Radio Law of Japan with respect to this product Also please do not transfer this product unless you give the same notice above to the transferee Please note that if you could not follow the instructions above you will be subject to penalties of Radio Law of Japan Texas Instruments Japan Limited address 24 1 Nishi Shi...

Page 28: ... property damage personal injury or death If there are questions concerning these ratings please contact a TI field representative prior to connecting interface electronics including input power and intended loads Any loads applied outside of the specified output range may result in unintended and or inaccurate operation and or possible permanent damage to the EVM and or interface electronics Plea...

Page 29: ...ency energy and has not been tested for compliance with the limits of computing devices pursuant to part 15 of FCC or ICES 003 rules which are designed to provide reasonable protection against radio frequency interference Operation of the equipment may cause interference with radio communications in which case the user at his own expense will be required to take whatever measures may be required t...

Page 30: ... its gain should be so chosen that the equivalent isotropically radiated power e i r p is not more than that necessary for successful communication This radio transmitter has been approved by Industry Canada to operate with the antenna types listed in the user guide with the maximum permissible gain and required antenna impedance for each antenna type indicated Antenna types not included in this l...

Page 31: ...er you obtained the Technical Regulations Conformity Certification as provided in Radio Law of Japan with respect to this product Also please do not transfer this product unless you give the same notice above to the transferee Please note that if you could not follow the instructions above you will be subject to penalties of Radio Law of Japan Texas Instruments Japan Limited address 24 1 Nishi Shi...

Page 32: ... property damage personal injury or death If there are questions concerning these ratings please contact a TI field representative prior to connecting interface electronics including input power and intended loads Any loads applied outside of the specified output range may result in unintended and or inaccurate operation and or possible permanent damage to the EVM and or interface electronics Plea...

Page 33: ...regulatory and safety related requirements concerning its products and any use of TI components in its applications notwithstanding any applications related information or support that may be provided by TI Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures monitor failures and their consequence...

Page 34: ...Mouser Electronics Authorized Distributor Click to View Pricing Inventory Delivery Lifecycle Information Texas Instruments TPS53319EVM 136 ...

Reviews: