background image

www.ti.com

I

L

+

I

CC

 

ǒ

V

CC

V

DD

 

0.8

Ǔ

(2)

L

+

V

DD

 

ǒ

V

CC

*

V

DD

Ǔ

D

I

L

 

f

boost

 

V

CC

(3)

2.2.4

Changing the Boost Capacitor

C

+

2

 

I

CC

 

ǒ

V

CC

*

V

DD

Ǔ

D

V

 

f

boost

 

V

CC

(4)

C

+

I

CC

 

ǒ

V

CC

*

V

DD

Ǔ

D

V

 

f

boost

 

V

CC

(5)

Operation

Use

Equation 2

to determine the required current rating.

Equation 2

shows the approximate relationship

between the average inductor current, I

L

, to the load current, load voltage, and input voltage (I

CC

, V

CC

, and

V

DD

, respectively.) Insert I

CC

, V

CC

, and V

DD

into

Equation 2

to solve for I

L

. The inductor must maintain at

least 90% of its initial inductance value at this current.

The minimum working inductance is 2.2

μ

H. A lower value may cause instability.

Ripple current,

Δ

I

L

, is peak-to-peak variation in inductor current. Smaller ripple current reduces core losses

in the inductor as well as the potential for EMI. Use

Equation 3

to determine the value of the inductor, L.

Equation 3

shows the relationships among inductance L, V

DD

, V

CC

, the switching frequency, f

boost

, and

Δ

I

L

.

Insert the maximum acceptable ripple current into

Equation 3

to solve for L.

Δ

I

L

is inversely proportional to L. Minimize

Δ

I

L

as much as is necessary for a specific application. Increase

the inductance to reduce the ripple current. Note that making the inductance too large prevents the boost
converter from responding to fast load changes properly. Typical inductor values for the TPA2013D1 are
4.7

μ

H to 6.8

μ

H.

Select an inductor with a small dc resistance, DCR. DCR reduces the output power due to the voltage
drop across the inductor.

The value of the boost capacitor is determined by the minimum value of working capacitance required for
stability and the maximum voltage ripple allowed on V

CC

in the application. The minimum value of working

capacitance is 10

μ

F. Do not use any component with a working capacitance less than 10

μ

F.

For X5R or X7R ceramic capacitors,

Equation 4

shows the relationships among the boost capacitance, C,

to load current, load voltage, ripple voltage, input voltage, and switching frequency (I

CC

, V

CC

,

Δ

V, V

DD

,

f

boost

respectively). Insert the maximum allowed ripple voltage into

Equation 4

to solve for C. A factor of

about 2 is included to implement the rules and specifications listed in the "Surface Mount Capacitors"
section of the TPA2013D1 data sheet (

SLOS520

).

For aluminum or tantalum capacitors,

Equation 5

shows the relationships among the boost capacitance,

C, to load current, load voltage, ripple voltage, input voltage, and switching frequency (I

CC

, V

CC

,

Δ

V, V

DD

,

f

boost

respectively). Insert the maximum allowed ripple voltage into

Equation 5

to solve for C. Solve this

equation assuming ESR is zero.

Capacitance of aluminum and tantalum capacitors is normally insensitive to applied voltage, so there is no
factor of 2 included in

Equation 5

. However, the ESR in aluminum and tantalum capacitors can be

significant. Choose an aluminum or tantalum capacitor with an ESR around 30 m

. For best performance

with tantalum capacitors, use at least a 10-V rating. Note that tantalum capacitors must generally be used
at voltages of half their ratings or less.

TPA2013D1EVM

4

SLOU194 – August 2007

Submit Documentation Feedback

Summary of Contents for TPA2013D1

Page 1: ...brief description of the module and a list of EVM specifications The TPA2013D1 is a 2 7 W Class D amplifier with built in boost converter It drives up to 2 7 W 10 THD N into a 4 Ω speaker from low supply voltages The TPA2013D1 audio power amplifier evaluation module is a complete stand alone audio board It contains the TPA2013D1 QFN RGP Class D audio power amplifier with an integrated boost conver...

Page 2: ...per J13 to set the gain as 2 V V 6 V V or 10 V V To achieve 2 V V place the jumper between heads 1 and 2 for 10 V V shunt heads 2 and 3 for 6 V V remove the jumper and let the gain pin float 1 The TPA2013D1EVM provides independent shutdown controls for the Class D amplifier and the boost converter Pins SDb and SDd shut down the boost converter and Class D amplifier respectively They are active low...

Page 3: ...t the boost voltage RESR ESR of the boost capacitor VCC Boost voltage Generated by the boost converter Voltage supply for the Class D amplifier VDD Supply voltage to the IC ΔIL Ripple current through the inductor ΔV Ripple voltage on VCC due to capacitance ΔVESR Ripple voltage on VCC due to the ESR of the boost capacitor 1 If a different boost voltage is desired use Equation 1 to determine the new...

Page 4: ...ue to the voltage drop across the inductor The value of the boost capacitor is determined by the minimum value of working capacitance required for stability and the maximum voltage ripple allowed on VCC in the application The minimum value of working capacitance is 10 μF Do not use any component with a working capacitance less than 10 μF For X5R or X7R ceramic capacitors Equation 4 shows the relat...

Page 5: ...um Required Output Max IL L Inductor Vendor ΔV C 2 Capacitor Vendor Load VDD VCC Power A μH Part Numbers mVpp μF Part Numbers Ω V V W 1 3 3 10 Toko DE2812C Kemet C1206C106K8PACTU 1 8 3 4 3 0 70 30 Coilcraft DO3314 Murata GRM32ER61A106KA01B Murata LQH3NPN3R3NG0 Taiyo Yuden LMK316BJ106ML T 4 7 22 Murata LQH43PN4R7NR0 1 6 8 3 5 5 1 13 30 Murata GRM32ER71A226KE20L Toko DE4514C Taiyo Yuden LMK316BJ226M...

Page 6: ...rs Figure 2 TPA2013D1EVM Top Layer Note C4 has two separate pad sizes One is for a 1210 ceramic capacitor and the other is for a size C tantalum capacitor Do not populate more than one at a time 6 TPA2013D1EVM SLOU194 August 2007 Submit Documentation Feedback ...

Page 7: ...www ti com TPA2013D1EVM PCB Layers Figure 3 TPA2013D1EVM Bottom Layer SLOU194 August 2007 TPA2013D1EVM 7 Submit Documentation Feedback ...

Page 8: ... R4 Resistor chip 330 Ω 1 10 W 1 0603 2 Rohm Digi Key MCR03EZPFX3300 RHM330HCT ND R5 R6 Resistor chip 270 Ω 1 16 W 5 0603 2 Panasonic Digi Key ERJ 3GEYJ271V P270GTR ND J1 J2 J4 Banana Jack w knurled thumbnut 4 Johnson Digi Key J5 nickle plated 111 2223 001 J587 ND J3 Header 3 position 2 mm male 2 mm 1 Norcomp DIBI Key center post removed 26633601RP2 3 positions 2663S 36 ND J6 J8 Header 3 position ...

Page 9: ...uct This notice contains important safety information about temperatures and voltages For additional information on TI s environmental and or safety programs please contact the TI application engineer or visit www ti com esh No license is granted under any patent right or other intellectual property right of TI covering or relating to any machine process or combination in which such TI products or...

Page 10: ...ice and is an unfair and deceptive business practice TI is not responsible or liable for any such statements TI products are not authorized for use in safety critical applications such as life support where a failure of the TI product would reasonably be expected to cause severe personal injury or death unless officers of the parties have executed an agreement specifically governing such use Buyer...

Reviews: