background image

www.ti.com

2.2

Boost Settings

2.2.1

Boost Terms

2.2.2

Changing the Boost Voltage

V

CC

+

ǒ

0.5

 

ǒ

R

1

)

R

2

Ǔ

Ǔ

R

1

(1)

2.2.3

Changing the Boost Inductor

Operation

shutdown pins directly to ground where it can be held for an indefinite period of time. Move the
jumpers back between headers 2 and 3 to tie the shutdown pins to V

DD

to enable Class-D amplifier.

Remove J10 and J12 to achieve the minimum Class-D shutdown current.

Note:

The boost converter provides power to the Class-D amplifier. When the boost converter is
shut down, no voltage is supplied to the Class-D amplifier causing the Class-D amplifier to
power off.

The default voltage for the boost converter is 5.5 V

The following is a list of terms and definitions:

C

MIN

Minimum boost capacitance required for a given ripple voltage on V

CC

.

f

boost

Switching frequency of the boost converter.

I

CC

Current pulled by the Class-D amplifier from the boost converter.

I

L

Current through the boost inductor.

R1 and R2

Resistors used to set the boost voltage.

R

ESR

ESR of the boost capacitor.

V

CC

Boost voltage. Generated by the boost converter. Voltage supply for the Class-D
amplifier.

V

DD

Supply voltage to the IC.

Δ

I

L

Ripple current through the inductor.

Δ

V

Ripple voltage on V

CC

due to capacitance.

Δ

V

ESR

Ripple voltage on V

CC

due to the ESR of the boost capacitor.

1. If a different boost voltage is desired, use

Equation 1

to determine the new values of R1 and R2.

2. The recommended value of R2 is 500 k

.

Working inductance decreases as inductor current increases. If the drop in working inductance is severe
enough, it may cause the boost converter to become unstable, or cause the TPA2013D1 to reach its
current limit at a lower output power than expected. Inductor vendors specify currents at which inductor
values decrease by a specific percentage. This can vary by 10% to 35%. Inductance is also affected by dc
current and temperature.

Inductor current rating is determined by the requirements of the load. The inductance is determined by two
factors: the minimum value required for stability and the maximum ripple current permitted in the
application.

SLOU194 – August 2007

TPA2013D1EVM

3

Submit Documentation Feedback

Summary of Contents for TPA2013D1

Page 1: ...brief description of the module and a list of EVM specifications The TPA2013D1 is a 2 7 W Class D amplifier with built in boost converter It drives up to 2 7 W 10 THD N into a 4 Ω speaker from low supply voltages The TPA2013D1 audio power amplifier evaluation module is a complete stand alone audio board It contains the TPA2013D1 QFN RGP Class D audio power amplifier with an integrated boost conver...

Page 2: ...per J13 to set the gain as 2 V V 6 V V or 10 V V To achieve 2 V V place the jumper between heads 1 and 2 for 10 V V shunt heads 2 and 3 for 6 V V remove the jumper and let the gain pin float 1 The TPA2013D1EVM provides independent shutdown controls for the Class D amplifier and the boost converter Pins SDb and SDd shut down the boost converter and Class D amplifier respectively They are active low...

Page 3: ...t the boost voltage RESR ESR of the boost capacitor VCC Boost voltage Generated by the boost converter Voltage supply for the Class D amplifier VDD Supply voltage to the IC ΔIL Ripple current through the inductor ΔV Ripple voltage on VCC due to capacitance ΔVESR Ripple voltage on VCC due to the ESR of the boost capacitor 1 If a different boost voltage is desired use Equation 1 to determine the new...

Page 4: ...ue to the voltage drop across the inductor The value of the boost capacitor is determined by the minimum value of working capacitance required for stability and the maximum voltage ripple allowed on VCC in the application The minimum value of working capacitance is 10 μF Do not use any component with a working capacitance less than 10 μF For X5R or X7R ceramic capacitors Equation 4 shows the relat...

Page 5: ...um Required Output Max IL L Inductor Vendor ΔV C 2 Capacitor Vendor Load VDD VCC Power A μH Part Numbers mVpp μF Part Numbers Ω V V W 1 3 3 10 Toko DE2812C Kemet C1206C106K8PACTU 1 8 3 4 3 0 70 30 Coilcraft DO3314 Murata GRM32ER61A106KA01B Murata LQH3NPN3R3NG0 Taiyo Yuden LMK316BJ106ML T 4 7 22 Murata LQH43PN4R7NR0 1 6 8 3 5 5 1 13 30 Murata GRM32ER71A226KE20L Toko DE4514C Taiyo Yuden LMK316BJ226M...

Page 6: ...rs Figure 2 TPA2013D1EVM Top Layer Note C4 has two separate pad sizes One is for a 1210 ceramic capacitor and the other is for a size C tantalum capacitor Do not populate more than one at a time 6 TPA2013D1EVM SLOU194 August 2007 Submit Documentation Feedback ...

Page 7: ...www ti com TPA2013D1EVM PCB Layers Figure 3 TPA2013D1EVM Bottom Layer SLOU194 August 2007 TPA2013D1EVM 7 Submit Documentation Feedback ...

Page 8: ... R4 Resistor chip 330 Ω 1 10 W 1 0603 2 Rohm Digi Key MCR03EZPFX3300 RHM330HCT ND R5 R6 Resistor chip 270 Ω 1 16 W 5 0603 2 Panasonic Digi Key ERJ 3GEYJ271V P270GTR ND J1 J2 J4 Banana Jack w knurled thumbnut 4 Johnson Digi Key J5 nickle plated 111 2223 001 J587 ND J3 Header 3 position 2 mm male 2 mm 1 Norcomp DIBI Key center post removed 26633601RP2 3 positions 2663S 36 ND J6 J8 Header 3 position ...

Page 9: ...uct This notice contains important safety information about temperatures and voltages For additional information on TI s environmental and or safety programs please contact the TI application engineer or visit www ti com esh No license is granted under any patent right or other intellectual property right of TI covering or relating to any machine process or combination in which such TI products or...

Page 10: ...ice and is an unfair and deceptive business practice TI is not responsible or liable for any such statements TI products are not authorized for use in safety critical applications such as life support where a failure of the TI product would reasonably be expected to cause severe personal injury or death unless officers of the parties have executed an agreement specifically governing such use Buyer...

Reviews: