background image

V

CC

GND

B

A

D

R

1

2

4

5

6

7

8

DE

3

RE

SN65HVD96

B

A

D

|V

OD

|

passive

active

A or B

B or A

R

|V

ID

|

passive

active

Driver signaling

(DE = high)

Receiver detecting

(RE = low)

V

CM

V

CM

|

| < 0.5V     |V |  > 0.9V

OD

OD

V

|

| < 0.5V     |V |  > 0.9V

OD

OD

V

Overview

www.ti.com

1

Overview

The SN65HVD96 is designed for error-free data transmission under wire-fault conditions. The receiver
provides correct output data whether the bus wires are connected normally or cross-wired. This feature is
known as symmetric-polarity ( Sympol™) and is auto-detected internally, so no intervention from the
controller or the operator is required (see

Figure 1

).

Figure 1. Block Diagram and Sympol™ Signal States

Figure 1

shows that Sympol™ signaling is similar but not identical to CAN-bus signaling. Sympol™

transceivers only look at the magnitude of the differential bus voltage, |V

A

– V

B

|, not its actual polarity. At a

driver output, this voltage is called |V

OD

|, at a remote receiver input, it becomes |V

ID

|.

A Sympol™ bus state is known as passive when |V

A

– V

B

| < 0.5V, and it is active when |V

A

– V

B

| > 0.9V.

Similar to RS-485, Sympol™ transceivers can be used for point-to-point, multi-drop, or multi-point
networks. Current-limited differential outputs protect in case of driver contention on a "party-line" bus. High
receiver input impedance allows the connection of at least 32 nodes. The pin-out is identical to the
industry-standard SN75176 transceiver, thus allowing for a direct upgrade from RS-485 to Sympol™.

Note that Sympol™ signaling does not support the operation of Sympol™ transceivers together with
RS-485 or CAN transceivers in a mixed-transceiver type of network. Only Sympol™ transceivers are able
to communicate between another. However, it is possible to replace an entire RS-485 transceiver network
with Sympol™ transceivers while maintaining the same high-level network protocol without the need for
software changes.

2

EVM Set-up and Precautions

Figure 2

shows the schematic of the SNHVD96 EVM. The board mounts 13 BergStik headers from JMP1

to JMP14 (JMP5 is omitted) and two 3-pin terminal blocks, TB1 and TB2, supporting the device evaluation
for a wide range of system configurations.

Pin 1 (EARTH) is a second ground pin that allows applying an external voltage between GND and
EARTH to simulate common-mode voltage conditions.

Pin 2 (GND) shall be connected to the negative output or ground terminal of the PSU. This pin
represents the ground potential of the device-under-test and the entire EVM. It also connects to
various jumpers on the board.

Pin 3 (VCC) shall be connected to the positive output of a regulated 5V power supply unit (PSU) as it
represents the positive supply voltage of the device-under-test and also connects to various jumpers
on the board.

2

Sympol™ Transceiver

SLLU128A – June 2010 – Revised August 2010

Copyright © 2010, Texas Instruments Incorporated

Summary of Contents for Sympol SN65HVD96

Page 1: ...g DUT_GND with EART_GND 3 4 Example for Stimulus and Probe Points with JMP4 and JMP14 4 5 Transceiver Configuration for Normal Operation 5 6 EVM Set up for Normal Transceiver Operation 5 7 Configuration for Maximum Loading 6 8 EVM Set up for Maximum Loading 6 9 Wire fault Simulation Using two EVMs 7 10 EVM Configurations Left as Receiver EVM Right as Transmitter EVM 7 11 Sympol Signaling at 500 kb...

Page 2: ...The pin out is identical to the industry standard SN75176 transceiver thus allowing for a direct upgrade from RS 485 to Sympol Note that Sympol signaling does not support the operation of Sympol transceivers together with RS 485 or CAN transceivers in a mixed transceiver type of network Only Sympol transceivers are able to communicate between another However it is possible to replace an entire RS ...

Page 3: ... EARTH to GND through a wire bridge between pin 1 and pin 2 of TB1 Figure 3 Bridging DUT_GND with EART_GND While JMP2 to JMP4 are stimulation points or headers through which the control and data signals for the SN65HVD96 are applied JMP1 and JMP11 to JMP14 are probe points or headers at which these signal can be measured Note that the 50 Ω resistors R2 R3 and R4 have the index n a indicating that ...

Page 4: ...respective probe points you want to measure 3 Adjust the power supply to 5 V 4 Adjust the generator outputs for a 5 V maximum output signal level or check the logic switching levels of the controller I O 5 Connect the power supply conductor with pin 3 of TB1 and observe the blue LED D1 turning on 6 Connect signal conductors from the controller or the generator with their corresponding EVM inputs a...

Page 5: ... pin 3 at JMP2 and the high potential for DE through a wire bridge from pin 2 to pin 1 at JMP3 Data from the signal generator enter the board at pin 2 and pin 3 of JMP4 This data is measured via channel 1 which is connected to pin 1 and pin 2 of JMP14 Channel 2 measures the receive data at JMP11 and channels 3 and 4 the bus voltages VA and VB at JMP6 2 Operation Under Maximum Load EIA 485 RS 485 s...

Page 6: ...lace R8 and R9 0 Ω default with 375 Ω connect pin 2 of JMP7 with pin 1 and pin 3 with pin 4 replace the previous wire bridge at TB1 with a second power supply unit PSU2 and connect the ground terminals of both PSU1 and PSU2 with a wire bridge as shown in Figure 8 Figure 8 EVM Set up for Maximum Loading Note that Figure 8 only shows the wiring of PSU2 for positive common mode voltages For negative ...

Page 7: ...he receiver Here the driver and receiver enable inputs receive low potential through the wire bridges to GND at JMP3 and JMP2 Figure 10 EVM Configurations Left as Receiver EVM Right as Transmitter EVM The input data signal entering EVM2 at JMP4 is measured on scope channel 1 probing the signal at the D input pin of JMP14 The cross wiring of the bus wires occurs at the EVM interlink between the two...

Page 8: ...the EVM and Taking Measurements www ti com Figure 11 Sympol Signaling at 500 kbps Over 1 Meter Cable Figure 12 Sympol Signaling is Unaffected by Common Mode Voltage Figure 13 Sympol Signaling is Unaffected by Cross wire Fault 8 Sympol Transceiver SLLU128A June 2010 Revised August 2010 Copyright 2010 Texas Instruments Incorporated ...

Page 9: ...4 Top View of SN65 HVD96 EVM Figure 15 Bottom View of SN65 HVD96 EVM For detailed information on the device parameters see the SN65HVD96 data sheet Lit SLLSE35 9 SLLU128A June 2010 Revised August 2010 Sympol Transceiver Copyright 2010 Texas Instruments Incorporated ...

Page 10: ...oduct This notice contains important safety information about temperatures and voltages For additional information on TI s environmental and or safety programs please contact the TI application engineer or visit www ti com esh No license is granted under any patent right or other intellectual property right of TI covering or relating to any machine process or combination in which such TI products ...

Page 11: ...ch statements TI products are not authorized for use in safety critical applications such as life support where a failure of the TI product would reasonably be expected to cause severe personal injury or death unless officers of the parties have executed an agreement specifically governing such use Buyers represent that they have all necessary expertise in the safety and regulatory ramifications o...

Page 12: ...Mouser Electronics Authorized Distributor Click to View Pricing Inventory Delivery Lifecycle Information Texas Instruments SN65HVD96EVM ...

Reviews: