background image

User's Guide

SLVU720A – June 2012 – Revised November 2012

TPS650380EVM-054

This user’s guide describes the characteristics, operation, and use of the Texas Instruments
TPS650380EVM-054 (PWR054-001) evaluation module (EVM). This EVM is designed to help the user
evaluate and test the operation and functionality of the TPS650380. The EVM converts a 2.5-V to 5.5-V
input voltage to 3 regulated output voltages that deliver 5 A, 2 A, and 1.8 A. The 5-A output operates 3
phases, the 2-A output operates 2 phases, and the 1.8-A output operates a single phase. The output
voltages are programmable via the I

2

C™ interfaces in 10-mV steps between 0.5 V and 1.77 V.

This

user’s guide includes setup instructions for the hardware, printed-circuit board layouts for the EVM, a
schematic diagram, a bill of materials, and test results for the EVM.

Contents

1

Introduction

..................................................................................................................

2

2

Setup

.........................................................................................................................

3

3

Software Setup and Operation

............................................................................................

8

4

Test Results

................................................................................................................

11

5

Board Layout

...............................................................................................................

18

6

Schematic and Bill of Materials

..........................................................................................

24

List of Figures

1

TPS650380 Software Main Panel

........................................................................................

8

2

Efficiency vs. Input Voltage (DCDC_A = DCDC_B = DCDC_C = 0.96 V, I

OUTA

= 3.4 A, I

OUTB

= 1.85 A, I

OUTC

= 0.9 A)

.....................................................................................................................

11

3

Efficiency of DCDC_A vs. Output Current (V

IN

= 3.6 V)

..............................................................

11

4

Efficiency of DCDC_B vs. Output Current (V

IN

= 3.6 V)

..............................................................

12

5

Efficiency of DCDC_C vs. Output Current (V

IN

= 3.6 V)

..............................................................

12

6

Load Regulation (V

IN

= 3.6 V, DCDC_A = DCDC_B = DCDC_C = 0.96 V)

.......................................

13

7

Line Regulation (DCDC_A = DCDC_B = DCDC_C = 0.96 V, I

OUTA

= 3.4 A, I

OUTB

= 1.85 A, I

OUTC

= 0.9 A)

.....

13

8

Start-up (V

IN

= 3.6 V, DCDC_A = DCDC_B = DCDC_C = 0.96 V, I

OUTA

= I

OUTB

= I

OUTC

= 0 A)

...................

14

9

Shutdown (V

IN

= 3.6 V, DCDC_A = DCDC_B = DCDC_C = 0.96 V, I

OUTA

= I

OUTB

= I

OUTC

= 0 A, Active

Output Capacitor Discharge Enabled)

..................................................................................

14

10

Shutdown (V

IN

= 3.6 V, DCDC_A = DCDC_B = DCDC_C = 0.96 V, I

OUTA

= I

OUTB

= I

OUTC

= 0 A, Active

Output Capacitor Discharge Enabled)

..................................................................................

15

11

Output Voltage Ripple Measured Across C6 (V

IN

= 3.6 V, DCDC_A = 0.96 V, DCDC_B = DCDC_C =

disabled, I

OUTA

= 5 A)

......................................................................................................

15

12

Input Voltage Ripple Measured Across C13 (V

IN

= 3.6 V, DCDC_A = 0.96 V, DCDC_B = DCDC_C =

Disabled, I

OUTA

= 5 A)

......................................................................................................

16

13

Load Transient Response (V

IN

= 3.6 V, DCDC_A = 0.96 V, DCDC_B = DCDC_C = Disabled, I

OUTA

= 3 A

to 5 A step)

.................................................................................................................

16

14

Loop Response (V

IN

= 3.6 V, DCDC_A = 0.96 V, DCDC_B = DCDC_C = Disabled, I

OUTA

= 5 A)

..............

17

15

Thermal Performance (V

IN

= 3.6 V, DCDC_A = DCDC_B = DCDC_C = 0.96 V, I

OUTA

= 3.4 A, I

OUTB

= 1.85

A, I

OUTC

= 0.9 A)

............................................................................................................

17

16

Assembly Layer

............................................................................................................

18

17

Top Silk Layer

..............................................................................................................

19

18

Top Layer

...................................................................................................................

20

I

2

C is a trademark of NXP B.V Corporation.

VeriSign is a trademark of VeriSign, Inc.
All other trademarks are the property of their respective owners.

1

SLVU720A – June 2012 – Revised November 2012

TPS650380EVM-054

Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

Summary of Contents for PWR054-001

Page 1: ...DCDC_B vs Output Current VIN 3 6 V 12 5 Efficiency of DCDC_C vs Output Current VIN 3 6 V 12 6 Load Regulation VIN 3 6 V DCDC_A DCDC_B DCDC_C 0 96 V 13 7 Line Regulation DCDC_A DCDC_B DCDC_C 0 96 V IO...

Page 2: ...10 MB of free hard disk space 512 MB of RAM USB TO GPIO Adapter The USB TO GPIO adapter is the link that allows the PC and the EVM to communicate One end of the USB TO GPIO adapter connects to the PC...

Page 3: ...CDC_C disabled measured 14 mVPP across C6 Maximum efficiency DCDC_A VIN 3 6V DCDC_A 0 96V IOUT 200mA 90 1 2 Setup This section describes the jumpers and connectors on the EVM as well as how to properl...

Page 4: ...oltage As shipped the EVM is configured for local sensing of the output voltage If output voltage sensing at the load remote sensing is desired see the Remote Sense Resistors section This is a high im...

Page 5: ...ad transient event 2 1 19 J19 SYS I2 C Connection from USB TO GPIO Adaptor This connects the USB TO GPIO adaptor to the SYS I2 C connection of the TPS650380 It provides the I2 C signals and a 3 3 V su...

Page 6: ...alled in this case For normal operation without an external supply voltage the jumper should be installed 2 2 Software Setup The software is available at the TI website http focus ti com docs toolsw f...

Page 7: ...processor to either the output headers J4 and J6 J7 and J9 for currents below 1A and J10 and J12 or to the output terminal blocks J17 and J18 for currents greater than 1A The leads should be short and...

Page 8: ...he USB cable between the adapter and PC as instructed during the install process The host PC software also automatically searches on the Internet if connected for updates to the EVM software If a new...

Page 9: ...harge circuit on shutdown changing the mode status of each output voltage Forced PWM mode or Power Save Mode as well as an option to disable the nPG_x bit for each output voltage individually These se...

Page 10: ...acitors to be installed on each output voltage in order to reduce output ripple or lessen the voltage drop due to a load transient Some capacitors are located near the TPS650380 IC while others can be...

Page 11: ...s This section provides typical performance waveforms for the TPS650380EVM 054 The default register settings were used unless otherwise noted Figure 2 Efficiency vs Input Voltage DCDC_A DCDC_B DCDC_C...

Page 12: ...iciency 1 30 40 100 60 90 20 0 10 80 70 100 0 96V 1 2V 1 4V Test Results www ti com Figure 4 Efficiency of DCDC_B vs Output Current VIN 3 6 V Figure 5 Efficiency of DCDC_C vs Output Current VIN 3 6 V...

Page 13: ...Load Regulation 1 100 DCDC_A DCDC_B DCDC_C www ti com Test Results Figure 6 Load Regulation VIN 3 6 V DCDC_A DCDC_B DCDC_C 0 96 V Figure 7 Line Regulation DCDC_A DCDC_B DCDC_C 0 96 V IOUTA 3 4 A IOUT...

Page 14: ...ti com Figure 8 Start up VIN 3 6 V DCDC_A DCDC_B DCDC_C 0 96 V IOUTA IOUTB IOUTC 0 A Figure 9 Shutdown VIN 3 6 V DCDC_A DCDC_B DCDC_C 0 96 V IOUTA IOUTB IOUTC 0 A Active Output Capacitor Discharge En...

Page 15: ...gure 10 Shutdown VIN 3 6 V DCDC_A DCDC_B DCDC_C 0 96 V IOUTA IOUTB IOUTC 0 A Active Output Capacitor Discharge Enabled Figure 11 Output Voltage Ripple Measured Across C6 VIN 3 6 V DCDC_A 0 96 V DCDC_B...

Page 16: ...lts www ti com Figure 12 Input Voltage Ripple Measured Across C13 VIN 3 6 V DCDC_A 0 96 V DCDC_B DCDC_C Disabled IOUTA 5 A Figure 13 Load Transient Response VIN 3 6 V DCDC_A 0 96 V DCDC_B DCDC_C Disab...

Page 17: ...ww ti com Test Results Figure 14 Loop Response VIN 3 6 V DCDC_A 0 96 V DCDC_B DCDC_C Disabled IOUTA 5 A Figure 15 Thermal Performance VIN 3 6 V DCDC_A DCDC_B DCDC_C 0 96 V IOUTA 3 4 A IOUTB 1 85 A IOU...

Page 18: ...rt as possible to minimize trace inductance Careful attention has been given to the routing of high frequency current loops and a single point grounding scheme is used Also the majority of the heatsin...

Page 19: ...www ti com Board Layout Figure 17 Top Silk Layer 19 SLVU720A June 2012 Revised November 2012 TPS650380EVM 054 Submit Documentation Feedback Copyright 2012 Texas Instruments Incorporated...

Page 20: ...Board Layout www ti com Figure 18 Top Layer 20 TPS650380EVM 054 SLVU720A June 2012 Revised November 2012 Submit Documentation Feedback Copyright 2012 Texas Instruments Incorporated...

Page 21: ...www ti com Board Layout Figure 19 Layer 2 21 SLVU720A June 2012 Revised November 2012 TPS650380EVM 054 Submit Documentation Feedback Copyright 2012 Texas Instruments Incorporated...

Page 22: ...Board Layout www ti com Figure 20 Layer 3 22 TPS650380EVM 054 SLVU720A June 2012 Revised November 2012 Submit Documentation Feedback Copyright 2012 Texas Instruments Incorporated...

Page 23: ...www ti com Board Layout Figure 21 Bottom Layer 23 SLVU720A June 2012 Revised November 2012 TPS650380EVM 054 Submit Documentation Feedback Copyright 2012 Texas Instruments Incorporated...

Page 24: ...tself These devices are still fully tested TPS650380 devices Table 4 TPS650380EVM 054 Evaluation Components Count RefDes Value Description Size Part Number MFR 001 0 C1 C2 C25 Open Capacitor Ceramic X...

Page 25: ...L1 0 47uH 1 2 L2 0 47uH 1 2 L3 0 47uH 1 2 L4 0 47uH 1 2 L5 0 47uH 1 2 L6 0 47uH TP5 TP6 TP7 TP8 TP9 TP10 C5 100uF C17 C18 C19 C1 R22 10 0K 1 2 3 4 5 6 7 8 9 10 J25 R9 0 A1 PGND A2 LX_B2 A3 VIN_B A4 LX...

Page 26: ...4 7uF C27 10uF C2 R15 10 0K R17 100 R18 0 1 Q3 IRLR3715 TP14 TP15 TP13 R19 R20 R21 DCDC_A DCDC_B DCDC_C Schematic and Bill of Materials www ti com Figure 23 Schematic Page 2 6 2 Related Documentation...

Page 27: ...ncy energy and has not been tested for compliance with the limits of computing devices pursuant to part 15 of FCC or ICES 003 rules which are designed to provide reasonable protection against radio fr...

Page 28: ...na type and its gain should be so chosen that the equivalent isotropically radiated power e i r p is not more than that necessary for successful communication This radio transmitter has been approved...

Page 29: ...roduct only after you obtained the license of Test Radio Station as provided in Radio Law of Japan with respect to this product or 3 Use of this product only after you obtained the Technical Regulatio...

Page 30: ...property damage personal injury or death If there are questions concerning these ratings please contact a TI field representative prior to connecting interface electronics including input power and in...

Page 31: ...egulatory and safety related requirements concerning its products and any use of TI components in its applications notwithstanding any applications related information or support that may be provided...

Reviews: