background image

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE 
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” 
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY 
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD 
PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate 
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable 
standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an 
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license 
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you 
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these 
resources.

TI’s products are provided subject to 

TI’s Terms of Sale

 or other applicable terms available either on 

ti.com

 or provided in conjunction with 

such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for 
TI products.

TI objects to and rejects any additional or different terms you may have proposed. 

IMPORTANT NOTICE

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265

Copyright © 202

2

, Texas Instruments Incorporated

Summary of Contents for F280025C

Page 1: ...4 1 F280025C controlCARD Features 5 4 2 Assumed Operating Conditions 5 4 3 Using the controlCARD 5 4 4 Experimentation Software 6 5 Special Notes 7 5 1 XDS100v2 Emulator and SCI UART Connectivity 7 5...

Page 2: ...e following location install_directory c2000 C2000Ware_x_xx_xx_xx boards controlCARDs TMDSCNCD280025C Revx Note This kit is designed to explore the functionality of F28002x microcontrollers The contro...

Page 3: ...isolation barrier of the controlCARD 1 Connect and power embedded emulator a Connect USB B mini connector to J1 A 2 Provide power to the isolated F280025C device a Insert the TMDSCNCD280025C controlC...

Page 4: ...circuitry has been added to the docking station In such cases it is recommended to use an external 5 V power supply 2 5 mm inner diameter x 5 5 mm outer diameter and plug it into J1 A compatible supp...

Page 5: ...nector via an accompanying baseboard For example if using a TMDSHSECDOCK docking station baseboard 5 V DC should be input into the docking station s J1 or J17 Then S1 needs to be toggled to the approp...

Page 6: ...rated Development Environment IDE is recommended for developing and debugging software for the C2000 series of MCUs CCS is free to download and use with the controlCARD Introductory videos for CCS are...

Page 7: ...ADC input has its own RC network made up of the internal sample and hold capacitor switch resistance and parasitic capacitance By changing the inline resistance and parallel capacitor we can optimize...

Page 8: ...recommended to place an additional female SMA connector Figure 5 1 on the controlCARD docking station to receive the signal via SMA for best noise immunity For the local RC network 30 resistors and 30...

Page 9: ...Key Components on the controlCARD Front www ti com Hardware References SPRUIR3B SEPTEMBER 2019 REVISED JUNE 2022 Submit Document Feedback TMS320F280025C controlCARD Information Guide 9 Copyright 2022...

Page 10: ...on UART connector USB mini A connector used to provide XDS100v2 emulation and USB to UART SCI communication through FTDI logic S1 A determines which connections are enabled to the MCU J1 FSI Header Up...

Page 11: ...6 of the 180 pin controlCARD connector will be directly connected to GPIO 28 S1 QEP and SPIB selection switch This switch allows GPIO24 and GPIO25 to be routed to one of two locations on the HSEC conn...

Page 12: ...p 1 up Flash USB 7 Revision History NOTE Page numbers for previous revisions may differ from page numbers in the current version Changes from Revision A March 2020 to Revision B June 2022 Page Changed...

Page 13: ...ther than TI b the nonconformity resulted from User s design specifications or instructions for such EVMs or improper system design or c User has not paid on time Testing and other quality control tec...

Page 14: ...These limits are designed to provide reasonable protection against harmful interference in a residential installation This equipment generates uses and can radiate radio frequency energy and if not in...

Page 15: ...instructions set forth by Radio Law of Japan which includes but is not limited to the instructions below with respect to EVMs which for the avoidance of doubt are stated strictly for convenience and s...

Page 16: ...any interfaces electronic and or mechanical between the EVM and any human body are designed with suitable isolation and means to safely limit accessible leakage currents to minimize the risk of electr...

Page 17: ...R DAMAGES ARE CLAIMED THE EXISTENCE OF MORE THAN ONE CLAIM SHALL NOT ENLARGE OR EXTEND THIS LIMIT 9 Return Policy Except as otherwise provided TI does not offer any refunds returns or exchanges Furthe...

Page 18: ...change without notice TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource Other reproduction and display of thes...

Reviews: