Texas Instruments DIYAMP-SOT23-EVM User Manual Download Page 33

【無線電波を送信する製品の開発キットをお使いになる際の注意事項】 開発キットの中には技術基準適合証明を受けて

いないものがあります。 技術適合証明を受けていないもののご使用に際しては、電波法遵守のため、以下のいずれかの

措置を取っていただく必要がありますのでご注意ください。

1.

電波法施行規則第

6

条第

1

項第

1

号に基づく平成

18

3

28

日総務省告示第

173

号で定められた電波暗室等の試験設備でご使用

いただく。

2.

実験局の免許を取得後ご使用いただく。

3.

技術基準適合証明を取得後ご使用いただく。

なお、本製品は、上記の「ご使用にあたっての注意」を譲渡先、移転先に通知しない限り、譲渡、移転できないものとします。

上記を遵守頂けない場合は、電波法の罰則が適用される可能性があることをご留意ください。 日本テキサス・イ

ンスツルメンツ株式会社

東京都新宿区西新宿6丁目24番1号

西新宿三井ビル

3.3.3

Notice for EVMs for Power Line Communication:

Please see

http://www.tij.co.jp/lsds/ti_ja/general/eStore/notice_02.page

電力線搬送波通信についての開発キットをお使いになる際の注意事項については、次のところをご覧ください。

http:/

/www.tij.co.jp/lsds/ti_ja/general/eStore/notice_02.page

3.4

European Union

3.4.1

For EVMs subject to EU Directive 2014/30/EU (Electromagnetic Compatibility Directive)

:

This is a class A product intended for use in environments other than domestic environments that are connected to a
low-voltage power-supply network that supplies buildings used for domestic purposes. In a domestic environment this
product may cause radio interference in which case the user may be required to take adequate measures.

4

EVM Use Restrictions and Warnings:

4.1 EVMS ARE NOT FOR USE IN FUNCTIONAL SAFETY AND/OR SAFETY CRITICAL EVALUATIONS, INCLUDING BUT NOT

LIMITED TO EVALUATIONS OF LIFE SUPPORT APPLICATIONS.

4.2 User must read and apply the user guide and other available documentation provided by TI regarding the EVM prior to handling

or using the EVM, including without limitation any warning or restriction notices. The notices contain important safety information
related to, for example, temperatures and voltages.

4.3

Safety-Related Warnings and Restrictions:

4.3.1

User shall operate the EVM within TI’s recommended specifications and environmental considerations stated in the user
guide, other available documentation provided by TI, and any other applicable requirements and employ reasonable and
customary safeguards. Exceeding the specified performance ratings and specifications (including but not limited to input
and output voltage, current, power, and environmental ranges) for the EVM may cause personal injury or death, or
property damage. If there are questions concerning performance ratings and specifications, User should contact a TI
field representative prior to connecting interface electronics including input power and intended loads. Any loads applied
outside of the specified output range may also result in unintended and/or inaccurate operation and/or possible
permanent damage to the EVM and/or interface electronics. Please consult the EVM user guide prior to connecting any
load to the EVM output. If there is uncertainty as to the load specification, please contact a TI field representative.
During normal operation, even with the inputs and outputs kept within the specified allowable ranges, some circuit
components may have elevated case temperatures. These components include but are not limited to linear regulators,
switching transistors, pass transistors, current sense resistors, and heat sinks, which can be identified using the
information in the associated documentation. When working with the EVM, please be aware that the EVM may become
very warm.

4.3.2

EVMs are intended solely for use by technically qualified, professional electronics experts who are familiar with the
dangers and application risks associated with handling electrical mechanical components, systems, and subsystems.
User assumes all responsibility and liability for proper and safe handling and use of the EVM by User or its employees,
affiliates, contractors or designees. User assumes all responsibility and liability to ensure that any interfaces (electronic
and/or mechanical) between the EVM and any human body are designed with suitable isolation and means to safely
limit accessible leakage currents to minimize the risk of electrical shock hazard. User assumes all responsibility and
liability for any improper or unsafe handling or use of the EVM by User or its employees, affiliates, contractors or
designees.

4.4 User assumes all responsibility and liability to determine whether the EVM is subject to any applicable international, federal,

state, or local laws and regulations related to User’s handling and use of the EVM and, if applicable, User assumes all
responsibility and liability for compliance in all respects with such laws and regulations. User assumes all responsibility and
liability for proper disposal and recycling of the EVM consistent with all applicable international, federal, state, and local
requirements.

5.

Accuracy of Information:

To the extent TI provides information on the availability and function of EVMs, TI attempts to be as accurate

as possible. However, TI does not warrant the accuracy of EVM descriptions, EVM availability or other information on its websites as
accurate, complete, reliable, current, or error-free.

Summary of Contents for DIYAMP-SOT23-EVM

Page 1: ...Reference 30 List of Figures 1 Location of Circuit Configurations 4 2 Detach Desired Circuit Configuration 5 3 Detach Configuration With Attached IC and Passive Components 5 4 Terminal Strip TS 132 G...

Page 2: ...or Schematic 20 34 Non inverting Comparator Top Layer 21 35 Non Inverting Comparator Bottom Layer 21 36 Riso with Dual Feedback Schematic 21 37 Example of fZERO Where AOL_Loaded 20 dB 22 38 Riso Dual...

Page 3: ...sion Labs Op Amps videos 1 1 DIYAMP SOT23 EVM Kit Contents Table 1 details the contents included in the DIYAMP SOT23 EVM kit Table 1 DIYAMP SOT23 EVM Kit Contents Item Description Quantity DIYAMP SOT2...

Page 4: ...also provides the name of each individual circuit written in silk screen on the EVM Figure 1 Location of Circuit Configurations Table 2 Location of Circuit Legend Circuit Name Silk Screen Label Letter...

Page 5: ...tion 2 1 for the location of each circuit configuration Step 2 Gently flex the PCB panel at the score lines to separate the desired circuit configuration from the EVM Figure 2 Detach Desired Circuit C...

Page 6: ...Figure 5 Figure 5 4 Pin Length Terminal Strips Inserted in DIP Socket Step 6 Position separated PCB over pins and solder the connections Carefully remove from the DIP socket Figure 6 Detached Board Co...

Page 7: ...screen of its schematic for easy reference Figure 8 Silk Screen Circuit Schematic 3 2 Single Supply Multiple Feedback Filter Figure 9 shows the schematic for the single supply multiple feedback MFB fi...

Page 8: ...Type Type of Component Z1 Type of Component Z2 Type of Component Z3 Type of Component Z4 Type of Component Z5 Low Pass R1 C2 R3 R4 C5 High Pass C1 R2 C3 C4 R5 Band Pass R1 R2 C3 C4 R5 For additional g...

Page 9: ...logy The single supply Sallen Key filter can be configured as a low pass filter high pass filter or band pass filter based on the component selection of Z1 through Z5 Table 4 displays the type of pass...

Page 10: ...mplifier circuit configuration Figure 15 Single Supply Non Inverting Amplifier Schematic The non inverting op amp configuration takes an input signal that is applied directly to the high impedance non...

Page 11: ...populating C3 and C4 with capacitors and populating R3 or R4 with resistors R3 and R4 are used to set the DC output in the following two ways Option 1 VREF is directly applied to the input IN R3 is po...

Page 12: ...the top layer of the single supply non inverting circuit configuration is displayed in Figure 16 Figure 16 Single Supply Non Inverting Amplifier Top Layer The PCB layout of the bottom layer of the si...

Page 13: ...ier to a desired value Equation 9 displays the dc transfer function of the single supply inverting amplifier circuit configuration where C3 is shorted with a 0 resistor 9 Capacitor C3 provides the opt...

Page 14: ...e Supply Inverting Amplifier Bottom Layer 3 6 Difference Amplifier Figure 21 shows the schematic for the difference amplifier circuit configuration Figure 21 Difference Amplifier Schematic The differe...

Page 15: ...ut of the amplifier The cutoff frequency of the filter can be calculated using Equation 17 where R1 R4 R2 R3 and C1 C4 17 The PCB layout of the top layer of the difference amplifier circuit configurat...

Page 16: ...dual supply MFB filter circuit can be configured as a low pass filter high pass filter or band pass filter based on the component selection of Z1 through Z5 Table 5 displays the type of passive compon...

Page 17: ...pply Sallen Key Filter circuit configuration Figure 27 Dual Supply Sallen Key Filter Schematic Sallen Key is one of the most commonly applied active filter topologies The Sallen Key is a non inverting...

Page 18: ...Type Selection Pass Band Filter Type Type of Component Z1 Type of Component Z2 Type of Component Z3 Type of Component Z4 Type of Component Z5 Low Pass R1 R2 C3 C4 Not populated High Pass C1 C2 R3 R4 N...

Page 19: ...input signal Vin to the threshold voltage Vth where R3 is unpopulated 18 The comparator input signal is applied to the inverting input so the output will have an inverted polarity When Vin Vth the out...

Page 20: ...T23 package op amp or push pull output type comparators This configuration uses a voltage divider R3 and R4 to set up the threshold voltage The comparator will compare the input signal Vin to the thre...

Page 21: ...d in Figure 34 Figure 34 Non inverting Comparator Top Layer The PCB layout of the top layer of the non inverting comparator circuit configuration is displayed in Figure 35 Figure 35 Non Inverting Comp...

Page 22: ...g disadvantage in precision circuits The voltage drop from Riso is dependent on the output current or output load and may be significant compared to the desired signal The second capacitive load compe...

Page 23: ...figuration is displayed in Figure 38 Figure 38 Riso Dual Feedback Top Layer The PCB layout of the bottom layer of the Riso dual feedback amplifier circuit configuration is displayed in Figure 39 Figur...

Page 24: ...ack network will determine the amount of gain to amplify the input signal Equation 26 displays the transfer function of the dual supply non inverting amplifier circuit configuration shown in Figure 40...

Page 25: ...l that is applied directly to the inverting input terminal and outputs a signal that is the opposite polarity as the input signal The benefit of this topology is that it avoids common mode limitations...

Page 26: ...The PCB layout of the top layer of the dual supply inverting amplifier circuit configuration is displayed in Figure 44 Figure 44 Dual Supply Inverting Amplifier Top Layer The PCB layout of the bottom...

Page 27: ...s vertical SMA horizontal SMA wires or through hole test points Examples of these four connectors are shown in this section The SMA recommended for this board is TE Connectivity part number 5 1814400...

Page 28: ...to the output and Vref terminal Figure 49 Through Hole Test Points The input and output connections can also be accessed from the header strip The input connections are labeled IN and IN for the non...

Page 29: ...is labeled V the negative supply is labeled V and ground is labeled GND As an alternative wire can be used in place of the included terminals strips to power the board directly Figure 51 shows an all...

Page 30: ...signator QTY Value Description Package Reference Part Number Manufacturer PCB 1 Printed Circuit Board PA031 Any TS1 TS2 2 Header 2 54mm 32x1 Gold TH TS 132 G AA Samtec 5 2 Reference 1 Comparator with...

Page 31: ...set forth above or credit User s account for such EVM TI s liability under this warranty shall be limited to EVMs that are returned during the warranty period to the address designated by TI and that...

Page 32: ...the antenna types listed in the user guide with the maximum permissible gain and required antenna impedance for each antenna type indicated Antenna types not included in this list having a gain great...

Page 33: ...t the EVM user guide prior to connecting any load to the EVM output If there is uncertainty as to the load specification please contact a TI field representative During normal operation even with the...

Page 34: ...OST OF REMOVAL OR REINSTALLATION ANCILLARY COSTS TO THE PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES RETESTING OUTSIDE COMPUTER TIME LABOR COSTS LOSS OF GOODWILL LOSS OF PROFITS LOSS OF SAVINGS LOSS OF...

Page 35: ...TI Resource NO OTHER LICENSE EXPRESS OR IMPLIED BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD...

Reviews: