Texas Instruments bqTESLA bq500414Q User Manual Download Page 15

www.ti.com

Test Setup

To install the shield:

Remove clear plastic cover and hardware. Install the PWR633 filter using metal hardware provided. The
filter is grounded though the metal hardware to the TX coil area.

Circuit changes:

EMI_Shield select pin 21 ground = no shield, high(3.3V) = shield

FOD_CAL R52 no shield = 16.2 k

Ω

, shield = 8.06 k

Ω

NOTE

: if ONLY EMI behavior is to be evaluated with the addition of the shield, then circuit changes are

not required.

6.2.2.7

Configuration Resistor

Some functions can be configured by an external resistor pull up and connections, see the data sheet
(

SLUSBE4

) for more info:

1. Coil Select R58 and R57, configure for type of coil used

2. Shield / no shield Pin 21, configure for shield or no shield

3. Operating freq pin 26, R70 and R69, option to reduce operating range

6.2.2.8

Thermal Protection, NTC

Thermal protection is provided by an NTC resistor network is connected to pin 2. At 1 V on the sense side
(U10-2), the thermal fault is set, and the unit is shut down, The status LED, D7, illuminates red. The
system tries to restart in 5 minutes.

6.2.2.9

Foreign Object Detection

The bq500414Q EVM incorporated the Foreign Object Detection (FOD) call in WPC 1.1. Power loss is
calculated by comparing the power sent to the receiver (RX) with the power the RX reported receiving,
less know power loss. The transmitter determines the power sent to the RX by measuring input power and
calculating internal losses. The RX measures the power it received and also calculates losses. The RX
sends this information to the driver (TX) in a digital word, message packet. Unaccounted for power loss is
presumed to be a foreign object on the charging pad. Should this lost power exceed the threshold set by
R34, a FOD fault is set and power transfer is stopped.

Three key measurements for the TX FOD calculation:

Input Power

– Product of input voltage and current. Input voltage is measured at pin 45 though R33

and R31. Input current is measured using sense resistor R64 and current sense amp U9. Both
measurements must be very accurate.

Power Loss in Transmitter

– This is an internal calculation based on the operating point of the

transmitter. The calculation is adjusted using FOD_Cal resistor, R52. This calculation changes with
external component changes in the power path such as MOSFETs, resonate capacitors, and TX coil.
Recalculation of R52 and R3 is required.

Receiver Reported Power

– The receiver calculates and reports power it receives in the message

packet “Received Power Packet (0X04)”.

The FOD threshold on the EVM is set to 550 mW, R3 is set to 86.6 k

Ω

. Increasing R3 increases the

threshold and reduces the sensitivity to foreign objects.

This loss threshold is determined after making a measurement of transmitter performance using a FOD
calibration receiver similar to the unit manufactured by Avid

®

Technology. Contact Texas Instruments for

the FOD calibration procedure for bq500414Q.

6.2.2.10

WPC Certification

The bq500414QEVM-629 was tested and certified to WPC version 1.2.

15

SLVUA40A – March 2014 – Revised January 2015

bq500414Q bqTESLA Wireless Power TX EVM

Submit Documentation Feedback

Copyright © 2014–2015, Texas Instruments Incorporated

Summary of Contents for bqTESLA bq500414Q

Page 1: ...escriptions 3 4 1 Connector and Test Point Descriptions 3 4 2 Test Point Descriptions 3 5 Schematic and Bill of Materials 6 6 Test Setup 12 6 1 Equipment 12 6 2 Equipment Setup 13 7 bq500414QEVM 629 A...

Page 2: ...Max Unit Input Characteristics VIN Input voltage bq500414Q 6 12 16 V IIN Input current VIN 12 V RX IOUT 1 A at 5 V 570 mA Input no load current VIN 12 V IOUT 0 A 72 mA Input stand by current VIN 12 V...

Page 3: ...MOD and FOD Enable Disable Shorting Jumper installed Enable removed Disable 4 1 4 2 JP2 LED select bypass Shorting Jumper installed LED Bin 0 Default is not installed 4 2 Test Point Descriptions The t...

Page 4: ...Feedback circuit for 12V regulator 4 2 13 TP13 GND Ground test point connection 4 2 14 TP14 I_SENSE Current as measured in the system 12V supply 4 2 15 TP15 COMM Sample of coil voltage return for com...

Page 5: ...or 4 2 27 TP27 PWRGD Power good signal from the 3 3Vdc regulator 4 2 28 TP28 TANK3 Coil 3 Resonant Tank Drive Signal 4 2 29 TP29 PHSE3 Coil 3 Drive signal 4 2 30 TP30 GND Ground test point connection...

Page 6: ...ND 1 F C7 1 00k R62 TP26 EN_PWR AGND 100k R51 270pF C12 0 22 F C13 1 00k R26 270pF C9 I_SENSE GND TP14 0 1 F C57 GND GND GND GND 0 025 R30 TP9 GND GND 2700pF C17 AGND 49 9 R50 150pF C36 TP12 5 10k R12...

Page 7: ...DMG4800LSD Q3B GND GND GND TP30 3V3_VCC GND COMM COMM 10 0 R34 200k R19 BAT54SW D6 3V3_VCC 23 2k R21 0 1 F C32 33pF C28 10 0 R16 COIL1 2 SN74LVC1G3157 Q1 B2 1 GND 2 B1 3 A 4 VCC 5 S 6 U5 TP4 10 0k R2...

Page 8: ...D 30 RESERVED 31 GND 32 V33D 33 V33A 34 BPCAP 35 GND 36 COMM_A 37 COMM_A 38 COMM_B 39 COMM_B 40 RESERVED 41 I_SENSE 42 LOSS_THR 43 LED_MODE 44 V_SENSE 45 Unused 46 GND 47 ADCREF 48 EPAD 49 U10 TRST AG...

Page 9: ...5 C0G NP0 0603 0603 GRM1885C1H151JA01D MuRata C41 1 4 7uF CAP CERM 4 7uF 25V 10 X5R 0805 0805 GRM21BR61E475KA12L MuRata C44 C50 C58 3 22uF CAP CERM 22uF 25V 10 X5R 1210 1210 GRM32ER61E226KE15L MuRata...

Page 10: ...0 025 ohm 1 0 5W 1206 1206 CSR1206FK25L0 Stackpole Electronics Inc R31 1 2 00k RES 2 00k ohm 1 0 1W 0603 0603 CRCW06032K00FKEA Vishay Dale R33 1 15 4k RES 15 4k ohm 1 0 1W 0603 0603 CRCW060315K4FKEA...

Page 11: ...0603 0603 C0603X472K5RACTU Kemet J3 0 NoPop Header 2x7 pin 100mil spacing Straight 4 Wall 0 338 x 0 988 inch 2514 6002UB 3M R1 0 2 00k RES 2 00k ohm 1 0 1W 0603 0603 CRCW06032K00FKEA Vishay Dale R4 0...

Page 12: ...ply Regulatory Compliance Certifications Recommend selection and use of an external a power supply which meets TI s required minimum electrical ratings in addition to complying with applicable regiona...

Page 13: ...the load at TP7 All voltmeters must be Kelvin connected at the pin to the point of interest 6 2 1 Equipment Setup Diagram The diagram in Figure 4 shows the test setup Figure 4 Equipment Setup 6 2 2 EV...

Page 14: ...put voltage of 13 6 V was used Figure 5 Efficiency versus Power bq500414QEVM 629 Transmitter and HPA764 Receiver 6 2 2 4 Efficiency Efficiency is affected by changes in the power section Higher RDSON...

Page 15: ...culates losses The RX sends this information to the driver TX in a digital word message packet Unaccounted for power loss is presumed to be a foreign object on the charging pad Should this lost power...

Page 16: ...to provide a good low noise ground plane for all circuits A 2 layer PCB presents a high risk of poor performance Grounding between the bq500414Q GND EPAD pin 47 36 and 32 and filter capacitor returns...

Page 17: ...VM 629 Assembly Drawings and Layout Figure 7 Top Overlay 17 SLVUA40A March 2014 Revised January 2015 bq500414Q bqTESLA Wireless Power TX EVM Submit Documentation Feedback Copyright 2014 2015 Texas Ins...

Page 18: ...mbly Drawings and Layout www ti com Figure 8 Top Solder 18 bq500414Q bqTESLA Wireless Power TX EVM SLVUA40A March 2014 Revised January 2015 Submit Documentation Feedback Copyright 2014 2015 Texas Inst...

Page 19: ...EVM 629 Assembly Drawings and Layout Figure 9 Top Layer 19 SLVUA40A March 2014 Revised January 2015 bq500414Q bqTESLA Wireless Power TX EVM Submit Documentation Feedback Copyright 2014 2015 Texas Inst...

Page 20: ...ly Drawings and Layout www ti com Figure 10 Inner Layer 1 20 bq500414Q bqTESLA Wireless Power TX EVM SLVUA40A March 2014 Revised January 2015 Submit Documentation Feedback Copyright 2014 2015 Texas In...

Page 21: ...629 Assembly Drawings and Layout Figure 11 Inner Layer 2 21 SLVUA40A March 2014 Revised January 2015 bq500414Q bqTESLA Wireless Power TX EVM Submit Documentation Feedback Copyright 2014 2015 Texas In...

Page 22: ...low power wireless power evaluation kit from Texas Instruments visit the product folder on the TI Web site at http www ti com product bq500414Q 22 bq500414Q bqTESLA Wireless Power TX EVM SLVUA40A Mar...

Page 23: ...AX 16 2 Deleted the Input current value of MAX 1000 mA from Table 1 2 Changed Figure 1 and added Figure 2 and Figure 3 6 Changed R3 R22 R52 in the Table 2 8 NOTE Page numbers for previous revisions ma...

Page 24: ...ause harmful interference to radio communications However there is no guarantee that interference will not occur in a particular installation If this equipment does cause harmful interference to radio...

Page 25: ...ing the warranty period to the address designated by TI and that are determined by TI not to conform to such warranty If TI elects to repair or replace such EVM TI shall have a reasonable time to repa...

Page 26: ...essful communication This radio transmitter has been approved by Industry Canada to operate with the antenna types listed in the user guide with the maximum permissible gain and required antenna imped...

Page 27: ...ified allowable ranges some circuit components may have elevated case temperatures These components include but are not limited to linear regulators switching transistors pass transistors current sens...

Page 28: ...REMOVAL OR REINSTALLATION ANCILLARY COSTS TO THE PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES RETESTING OUTSIDE COMPUTER TIME LABOR COSTS LOSS OF GOODWILL LOSS OF PROFITS LOSS OF SAVINGS LOSS OF USE L...

Page 29: ...sponsible for compliance with all legal regulatory and safety related requirements concerning its products and any use of TI components in its applications notwithstanding any applications related inf...

Reviews: